Lin C-T, Ha T
Johns Hopkins University, Baltimore, MD, United States.
Johns Hopkins University, Baltimore, MD, United States; Howard Hughes Medical Institute, Baltimore, MD, United States.
Methods Enzymol. 2017;582:121-136. doi: 10.1016/bs.mie.2016.08.004. Epub 2016 Oct 27.
Helicases control the accessibility of single-stranded (ss) nucleic acid (NA) generated as a transient intermediate during almost every step in cells related to nucleic acid metabolisms. For subsequent processing, however, helicases need to adjust the pace of unwinding adequately to avoid ssNA exposure to nucleases. Therefore, understanding how the unwinding process of helicases is regulated is crucial to address genome integrity and repair mechanisms. Using single-molecule fluorescence-force spectroscopy with fluorescence localization, we recently observed the stoichiometry of UvrD helicase, which determines the functions of UvrD: translocation and unwinding. For the first time, we provide direct evidence that a UvrD dimer is required to initiate the unwinding pathway. Moreover, with subpixel precision of fluorescence localization, the dynamic parameters of helicases can be obtained directly. Here, we present detailed single-molecule assays for observing the biochemical activities of helicases in real time and revealing how mechanical forces are involved in protein-nucleic acid interactions. These single-molecule approaches are generally applicable to many other protein-nucleic acid systems.
解旋酶控制着单链(ss)核酸(NA)的可及性,单链核酸是细胞内几乎与核酸代谢相关的每一步骤中作为瞬时中间体产生的。然而,为了后续加工,解旋酶需要充分调整解旋速度,以避免单链核酸暴露于核酸酶。因此,了解解旋酶的解旋过程如何被调控对于理解基因组完整性和修复机制至关重要。我们最近使用单分子荧光力光谱结合荧光定位技术,观察了UvrD解旋酶的化学计量比,该化学计量比决定了UvrD的功能:易位和解旋。我们首次提供了直接证据,证明需要UvrD二聚体来启动解旋途径。此外,借助荧光定位的亚像素精度,可以直接获得解旋酶的动态参数。在这里,我们展示了详细的单分子检测方法,用于实时观察解旋酶的生化活性,并揭示机械力如何参与蛋白质-核酸相互作用。这些单分子方法通常适用于许多其他蛋白质-核酸系统。