Suppr超能文献

侧向磁镊与 TIRF 显微镜联用的力测定。

Force determination in lateral magnetic tweezers combined with TIRF microscopy.

机构信息

Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain.

出版信息

Nanoscale. 2018 Mar 1;10(9):4579-4590. doi: 10.1039/c7nr07344e.

Abstract

Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.

摘要

将单分子技术与荧光显微镜结合引起了广泛关注,因为它可以将力学测量与直接可视化的 DNA:蛋白质相互作用相关联。特别是,将其与全内反射荧光显微镜(TIRF)结合使用具有优势,因为该技术可以实现高信噪比。然而,这需要将长 DNA 分子拉伸穿过流动池的表面,以最大程度地使聚合物暴露于激发光下。在这项工作中,我们开发了一种在恒定力下横向拉伸 DNA 分子的模块,该模块可以轻松地在常规或组合的磁镊(MT)-TIRF 装置中实现。进一步在不同厚度的标准流动池和玻璃毛细管中对拉拔模块进行了表征,使用了两种类型的微米级超顺磁珠、长 DNA 分子和一种用于以毫弧度精度旋转毛细管的自制设备。磁拉拔模块实现的力范围在 0.1 到 30 pN 之间。还提出了一种用于估计流动拉伸系链珠中力的形式主义,并且将结果与横向 MT 的结果进行了比较,表明横向 MT 可以以较低的分散度实现更高的力。最后,我们通过表征芽孢杆菌的着丝粒结合蛋白 ParB 对 DNA 的结合来证明与 TIRF 显微镜的兼容性和测量的并行化。同时的 MT 拉伸和荧光成像证明了 BsParB 在限制凝聚的条件下对 DNA 的非特异性结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c901/5831119/c38f64e7d779/c7nr07344e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验