Suppr超能文献

生物炭通过改变厌氧稻田土壤微生物群落组成来降低一氧化二氮和增强甲烷排放。

Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil.

机构信息

Laboratory for Agricultural Wastes Treatment and Recycling, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China.

Laboratory for Agricultural Wastes Treatment and Recycling, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China.

出版信息

Sci Total Environ. 2017 Mar 1;581-582:689-696. doi: 10.1016/j.scitotenv.2016.12.181. Epub 2017 Jan 4.

Abstract

Biochar application to agricultural soil is an appealing approach to mitigate nitrous oxide (NO) and methane (CH) emissions. However, the underlying microbial mechanisms are unclear. In this study, a paddy soil slurry was incubated anaerobically for 14d with biochar amendments produced from rice straw at 300, 500, or 700°C (B300, B500, and B700) to study their influences on greenhouse gas emissions. Illumina sequencing was used to characterize shift of soil bacterial and archaeal community composition. After peaking at day 1, NO emission then sharply decreased to low levels while CH started to emit at day 3 then continually increased with incubation. Compared to control soil (57.9mgkg soil), B300, B500, and B700 amendments decreased NO peak emission to 17.9, 1.28, and 0.59mgkg, mainly due to increased soil pH. In contrast, the amendments enhanced CH production from 58.2 to 93.4, 62.6, and 63.4mgkg at day 14 due to increased soil dissolved organic carbon. Abundance of denitrifying bacteria (e.g., Bacilli, 7.07-13.6 vs. 16.9%) was reduced with biochar amendments, especially with B500 and B700, contributing to the decreased NO emissions. However, larger pore size of B500 and B700 (surface area of 68.1 and 161mg) than B300 (4.40mg) favored electron transfer between bacteria and iron minerals, leading to increased abundance of iron-reducing bacteria, (e.g., Clostridia, 48.2-50.6 vs. 33.3%), which competed with methanogens to produce CH, thereby leading to lower increase in CH emission. Biochar amendments with high pH and surface area might be effective to mitigate emission of both NO and CH from paddy soil.

摘要

生物炭施用于农业土壤是一种很有吸引力的方法,可以减少一氧化二氮(NO)和甲烷(CH)的排放。然而,其潜在的微生物机制尚不清楚。在这项研究中,使用从稻草中在 300、500 或 700°C 下制备的生物炭(B300、B500 和 B700)对水稻土浆进行了 14 天的厌氧培养,以研究它们对温室气体排放的影响。Illumina 测序用于描述土壤细菌和古菌群落组成的变化。NO 排放峰值出现在第 1 天,然后迅速降至低水平,而 CH 则在第 3 天开始排放,然后随着培养时间的延长不断增加。与对照土壤(57.9mgkg 土壤)相比,B300、B500 和 B700 减少了 NO 峰值排放至 17.9、1.28 和 0.59mgkg,主要是由于土壤 pH 值升高。相比之下,由于土壤溶解有机碳的增加,B300、B500 和 B700 使 CH 的产生在第 14 天增加到 93.4、62.6 和 63.4mgkg。随着生物炭的添加,反硝化细菌(如芽孢杆菌,7.07-13.6%对 16.9%)的丰度减少,特别是 B500 和 B700,这导致 NO 排放量减少。然而,B500 和 B700 (表面积为 68.1 和 161mg)比 B300 (4.40mg)更大的孔径有利于细菌和铁矿物之间的电子转移,导致铁还原菌(如梭菌,48.2-50.6%对 33.3%)丰度增加,它们与产甲烷菌竞争产生 CH,从而导致 CH 排放的增加减少。具有高 pH 值和表面积的生物炭可能是有效减少稻田中 NO 和 CH 排放的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验