Suppr超能文献

在二元结局的随机试验中,在不做回归模型假设的情况下,通过对预后基线变量进行调整来提高精度。

Improving precision by adjusting for prognostic baseline variables in randomized trials with binary outcomes, without regression model assumptions.

作者信息

Steingrimsson Jon Arni, Hanley Daniel F, Rosenblum Michael

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.

Department of Neurology, Brain Injury Outcomes Coordinating Center, Johns Hopkins University, Baltimore, MD 21231, United States.

出版信息

Contemp Clin Trials. 2017 Mar;54:18-24. doi: 10.1016/j.cct.2016.12.026. Epub 2017 Jan 4.

Abstract

In randomized clinical trials with baseline variables that are prognostic for the primary outcome, there is potential to improve precision and reduce sample size by appropriately adjusting for these variables. A major challenge is that there are multiple statistical methods to adjust for baseline variables, but little guidance on which is best to use in a given context. The choice of method can have important consequences. For example, one commonly used method leads to uninterpretable estimates if there is any treatment effect heterogeneity, which would jeopardize the validity of trial conclusions. We give practical guidance on how to avoid this problem, while retaining the advantages of covariate adjustment. This can be achieved by using simple (but less well-known) standardization methods from the recent statistics literature. We discuss these methods and give software in R and Stata implementing them. A data example from a recent stroke trial is used to illustrate these methods.

摘要

在具有对主要结局有预后作用的基线变量的随机临床试验中,通过对这些变量进行适当调整,有可能提高精度并减少样本量。一个主要挑战是,有多种统计方法可用于调整基线变量,但对于在给定情况下哪种方法最适用几乎没有指导。方法的选择可能会产生重要影响。例如,如果存在任何治疗效果异质性,一种常用方法会导致无法解释的估计值,这将危及试验结论的有效性。我们提供了关于如何避免此问题同时保留协变量调整优势的实用指南。这可以通过使用近期统计学文献中的简单(但不太知名)标准化方法来实现。我们讨论这些方法,并给出在R和Stata中实现它们的软件。使用最近一项中风试验的数据示例来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验