Suppr超能文献

在估计依从者和不依从者平均因果效应时,对主要可忽略性违反的敏感性分析。

Sensitivity analysis for principal ignorability violation in estimating complier and noncomplier average causal effects.

机构信息

Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, Maryland.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

出版信息

Stat Med. 2024 Aug 30;43(19):3664-3688. doi: 10.1002/sim.10153. Epub 2024 Jun 18.

Abstract

An important strategy for identifying principal causal effects (popular estimands in settings with noncompliance) is to invoke the principal ignorability (PI) assumption. As PI is untestable, it is important to gauge how sensitive effect estimates are to its violation. We focus on this task for the common one-sided noncompliance setting where there are two principal strata, compliers and noncompliers. Under PI, compliers and noncompliers share the same outcome-mean-given-covariates function under the control condition. For sensitivity analysis, we allow this function to differ between compliers and noncompliers in several ways, indexed by an odds ratio, a generalized odds ratio, a mean ratio, or a standardized mean difference sensitivity parameter. We tailor sensitivity analysis techniques (with any sensitivity parameter choice) to several types of PI-based main analysis methods, including outcome regression, influence function (IF) based and weighting methods. We discuss range selection for the sensitivity parameter. We illustrate the sensitivity analyses with several outcome types from the JOBS II study. This application estimates nuisance functions parametrically - for simplicity and accessibility. In addition, we establish rate conditions on nonparametric nuisance estimation for IF-based estimators to be asymptotically normal - with a view to inform nonparametric inference.

摘要

识别主要因果效应(不合规情况下的流行估计量)的一个重要策略是调用主要可忽略性(PI)假设。由于 PI 是不可检验的,因此评估效应估计对其违反的敏感性非常重要。我们专注于常见的单侧不合规设置,其中有两个主要层,即依从者和不依从者。在 PI 下,依从者和不依从者在对照条件下具有相同的结果-协变量函数。对于敏感性分析,我们允许该函数在几种情况下在依从者和不依从者之间有所不同,由比值比、广义比值比、均值比或标准化均差敏感性参数索引。我们根据几种基于 PI 的主要分析方法(包括结果回归、基于影响函数(IF)和加权方法)定制敏感性分析技术(使用任何敏感性参数选择)。我们讨论了敏感性参数的范围选择。我们使用来自 JOBS II 研究的几种结果类型来说明敏感性分析。此应用程序参数化地估计干扰函数 - 为了简单和可访问性。此外,我们为基于 IF 的估计器建立了非参数干扰估计的速率条件,以便进行渐近正态性 - 以进行非参数推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验