Steingrimsson Jon A, Barker David H, Bie Ruofan, Dahabreh Issa J
Department of Biostatistics, Brown University, 121 South Main Street, Providence, RI 02903, USA.
Department of Psychiatry, Rhode Island Hospital, Providence, RI 02904, USA.
Biostatistics. 2024 Apr 15;25(2):289-305. doi: 10.1093/biostatistics/kxad006.
Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but from which covariate information can be obtained. In such analyses, a key practical challenge is the presence of systematically missing data when some trials have collected data on one or more baseline covariates, but other trials have not, such that the covariate information is missing for all participants in the latter. In this article, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.
因果可解释的荟萃分析整合了一系列随机对照试验的信息,以估计目标人群中的治疗效果。在该目标人群中,进行实验可能不可行,但可以获取协变量信息。在这类分析中,一个关键的实际挑战是存在系统性缺失数据的情况,即一些试验收集了一个或多个基线协变量的数据,而其他试验却没有,导致后者所有参与者的协变量信息缺失。在本文中,当荟萃分析中的某些试验系统性地缺失协变量数据时,我们给出了目标人群中潜在(反事实)结局均值和平均治疗效果的识别结果。我们提出了三种估计目标人群平均治疗效果的方法,研究了它们的渐近性质,并表明它们在模拟研究中具有良好的有限样本性能。我们使用这些估计方法分析了两项大型肺癌筛查试验的数据以及来自美国国家健康与营养检查调查(NHANES)的目标人群数据。为了适应NHANES复杂的调查设计,我们对方法进行了修改,纳入调查抽样权重并考虑聚类情况。