Suppr超能文献

脑活动流模式分析在注意力缺陷多动障碍中的诊断效用

Diagnostic utility of brain activity flow patterns analysis in attention deficit hyperactivity disorder.

作者信息

Biederman J, Hammerness P, Sadeh B, Peremen Z, Amit A, Or-Ly H, Stern Y, Reches A, Geva A, Faraone S V

机构信息

Massachusettes General Hospital,Boston,MA,USA.

ElMindA Ltd,Herzliya,Israel.

出版信息

Psychol Med. 2017 May;47(7):1259-1270. doi: 10.1017/S0033291716003329. Epub 2017 Jan 9.

Abstract

BACKGROUND

A previous small study suggested that Brain Network Activation (BNA), a novel ERP-based brain network analysis, may have diagnostic utility in attention deficit hyperactivity disorder (ADHD). In this study we examined the diagnostic capability of a new advanced version of the BNA methodology on a larger population of adults with and without ADHD.

METHOD

Subjects were unmedicated right-handed 18- to 55-year-old adults of both sexes with and without a DSM-IV diagnosis of ADHD. We collected EEG while the subjects were performing a response inhibition task (Go/NoGo) and then applied a spatio-temporal Brain Network Activation (BNA) analysis of the EEG data. This analysis produced a display of qualitative measures of brain states (BNA scores) providing information on cortical connectivity. This complex set of scores was then fed into a machine learning algorithm.

RESULTS

The BNA analysis of the EEG data recorded during the Go/NoGo task demonstrated a high discriminative capacity between ADHD patients and controls (AUC = 0.92, specificity = 0.95, sensitivity = 0.86 for the Go condition; AUC = 0.84, specificity = 0.91, sensitivity = 0.76 for the NoGo condition).

CONCLUSIONS

BNA methodology can help differentiate between ADHD and healthy controls based on functional brain connectivity. The data support the utility of the tool to augment clinical examinations by objective evaluation of electrophysiological changes associated with ADHD. Results also support a network-based approach to the study of ADHD.

摘要

背景

先前一项小型研究表明,基于事件相关电位(ERP)的新型脑网络分析——脑网络激活(BNA),可能在注意力缺陷多动障碍(ADHD)的诊断中具有实用价值。在本研究中,我们在更大规模的患有和未患有ADHD的成年人群体中,检验了BNA方法新的先进版本的诊断能力。

方法

研究对象为未服用药物的18至55岁右利手成年男女,他们有或无DSM-IV诊断的ADHD。在受试者执行反应抑制任务(Go/NoGo)时,我们收集脑电图(EEG)数据,然后对EEG数据进行时空脑网络激活(BNA)分析。该分析生成了脑状态定性测量值(BNA分数)的展示,提供了有关皮质连接性的信息。然后将这组复杂的分数输入机器学习算法。

结果

在Go/NoGo任务期间记录的EEG数据的BNA分析显示,ADHD患者与对照组之间具有较高的区分能力(Go条件下,曲线下面积[AUC]=0.92,特异性=0.95,敏感性=0.86;NoGo条件下,AUC=0.84,特异性=0.91,敏感性=0.76)。

结论

BNA方法可基于功能性脑连接性帮助区分ADHD与健康对照组。这些数据支持该工具通过客观评估与ADHD相关的电生理变化来辅助临床检查的实用性。结果还支持基于网络的ADHD研究方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验