Kothari P, Schiffhauer E S, Robinson D N
Johns Hopkins University, Baltimore, MD, United States.
Methods Cell Biol. 2017;137:307-322. doi: 10.1016/bs.mcb.2016.03.038. Epub 2016 May 2.
Cytokinesis, a model cell shape change event, is controlled by an integrated system that coordinates the mitotic spindle signals with a mechanoresponsive cytoskeletal network that drives contractility and furrow ingression. Quantitative methods that measure cell mechanics, mechanoresponse (mechanical stress-induced protein accumulation), protein dynamics, and molecular interactions are necessary to provide insight into both the mechanical and biochemical components involved in cytokinesis and cell shape regulation. Micropipette aspiration, fluorescence correlation and cross-correlation spectroscopy, and fluorescence recovery after photobleaching are valuable methods for measuring cell mechanics and protein dynamics in vivo that occur on nanometer to micron length-scales, and microsecond to minute timescales. Collectively, these methods provide the ability to quantify the molecular interactions that control the cell's ability to change shape and undergo cytokinesis.
胞质分裂是一种典型的细胞形状变化事件,由一个整合系统控制,该系统将有丝分裂纺锤体信号与驱动收缩性和沟侵入的机械响应性细胞骨架网络协调起来。测量细胞力学、机械响应(机械应力诱导的蛋白质积累)、蛋白质动力学和分子相互作用的定量方法对于深入了解参与胞质分裂和细胞形状调节的机械和生化成分至关重要。微量移液器吸液、荧光相关和交叉相关光谱以及光漂白后的荧光恢复是测量体内细胞力学和蛋白质动力学的有价值方法,这些过程发生在纳米到微米的长度尺度以及微秒到分钟的时间尺度上。总体而言,这些方法提供了量化控制细胞形状变化和进行胞质分裂能力的分子相互作用的能力。