Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD.
Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD.
J Cell Biol. 2019 Mar 4;218(3):895-908. doi: 10.1083/jcb.201806058. Epub 2019 Jan 17.
Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell's ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.
动态的细胞形状变化需要一个高度敏感的细胞系统,能够对化学和机械输入做出反应。肌球蛋白 II 是细胞对机械输入做出反应的能力的关键因素,它表现出在受到施加的压力时能够积累的能力。在这里,我们表明,影响肌球蛋白 II 组装成纤维能力的输入会以可预测的方式影响肌球蛋白对压力做出反应的能力。通过对肌球蛋白 II 的数学建模,我们预测肌球蛋白 II 的机械响应将具有双相性,由组装成双极纤维的肌球蛋白 II 的百分比确定最佳状态。在 HeLa 和 NIH 3T3 细胞中,PKCζ 对 NMIIB 的重链磷酸化以及 NMIIA 的表达,可以通过影响其组装状态来控制 NMIIB 的机械响应能力。这些数据表明,肌球蛋白 II 组装状态的多个输入在肌球蛋白 II 水平上整合,以控制细胞对机械输入的反应。