Suppr超能文献

通过建模和挖掘分子相互作用网络无偏鉴定肺结核的血液生物标志物

Unbiased Identification of Blood-based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks.

作者信息

Sambarey Awanti, Devaprasad Abhinandan, Mohan Abhilash, Ahmed Asma, Nayak Soumya, Swaminathan Soumya, D'Souza George, Jesuraj Anto, Dhar Chirag, Babu Subash, Vyakarnam Annapurna, Chandra Nagasuma

机构信息

Department of Biochemistry, IISc, Bangalore 560012, India.

Centre for Infectious Disease Research (CIDR), IISc, Bangalore 560012, India.

出版信息

EBioMedicine. 2017 Feb;15:112-126. doi: 10.1016/j.ebiom.2016.12.009. Epub 2016 Dec 21.

Abstract

Efficient diagnosis of tuberculosis (TB) is met with multiple challenges, calling for a shift of focus from pathogen-centric diagnostics towards identification of host-based multi-marker signatures. Transcriptomics offer a list of differentially expressed genes, but cannot by itself identify the most influential contributors to the disease phenotype. Here, we describe a computational pipeline that adopts an unbiased approach to identify a biomarker signature. Data from RNA sequencing from whole blood samples of TB patients were integrated with a curated genome-wide molecular interaction network, from which we obtain a comprehensive perspective of variations that occur in the host due to TB. We then implement a sensitive network mining method to shortlist gene candidates that are most central to the disease alterations. We then apply a series of filters that include applicability to multiple publicly available datasets as well as additional validation on independent patient samples, and identify a signature comprising 10 genes - FCGR1A, HK3, RAB13, RBBP8, IFI44L, TIMM10, BCL6, SMARCD3, CYP4F3 and SLPI, that can discriminate between TB and healthy controls as well as distinguish TB from latent tuberculosis and HIV in most cases. The signature has the potential to serve as a diagnostic marker of TB.

摘要

结核病(TB)的高效诊断面临多重挑战,这就要求将重点从以病原体为中心的诊断转向基于宿主的多标记特征识别。转录组学提供了一系列差异表达基因,但仅凭其自身无法确定对疾病表型影响最大的因素。在此,我们描述了一种计算流程,该流程采用无偏倚方法来识别生物标志物特征。将结核病患者全血样本的RNA测序数据与精心策划的全基因组分子相互作用网络相结合,由此我们全面了解了结核病导致的宿主变异情况。然后,我们实施一种灵敏的网络挖掘方法,筛选出对疾病改变最为关键的候选基因。接着,我们应用一系列筛选条件,包括适用于多个公开可用数据集以及对独立患者样本进行额外验证,并确定了一个由10个基因组成的特征——FCGR1A、HK3、RAB13、RBBP8、IFI44L、TIMM10、BCL6、SMARCD3、CYP4F3和SLPI,该特征在大多数情况下能够区分结核病患者与健康对照,以及区分结核病与潜伏性结核病和HIV。该特征有潜力作为结核病的诊断标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3c/5233809/b13902ba1954/gr7.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验