Suppr超能文献

下消化道出血30天死亡率临床预测工具的推导与内部验证

Derivation and Internal Validation of a Clinical Prediction Tool for 30-Day Mortality in Lower Gastrointestinal Bleeding.

作者信息

Sengupta Neil, Tapper Elliot B

机构信息

Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago Medical Center, Ill.

Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor.

出版信息

Am J Med. 2017 May;130(5):601.e1-601.e8. doi: 10.1016/j.amjmed.2016.12.009. Epub 2017 Jan 5.

Abstract

BACKGROUND

There are limited data to predict which patients with lower gastrointestinal bleeding are at risk for adverse outcomes. We aimed to develop a clinical tool based on admission variables to predict 30-day mortality in lower gastrointestinal bleeding.

METHODS

We used a validated machine learning algorithm to identify adult patients hospitalized with lower gastrointestinal bleeding at an academic medical center between 2008 and 2015. The cohort was split randomly into derivation and validation cohorts. In the derivation cohort, we used multiple logistic regression on all candidate admission variables to create a prediction model for 30-day mortality, using area under the receiving operator characteristic curve and misclassification rate to estimate prediction accuracy. Regression coefficients were used to derive an integer score, and mortality risk associated with point totals was assessed.

RESULTS

In the derivation cohort (n = 4044), 8 variables were most associated with 30-day mortality: age, dementia, metastatic cancer, chronic kidney disease, chronic pulmonary disease, anticoagulant use, admission hematocrit, and albumin. The model yielded a misclassification rate of 0.06 and area under the curve of 0.81. The integer score ranged from -10 to 26 in the derivation cohort, with a misclassification rate of 0.11 and area under the curve of 0.74. In the validation cohort (n = 2060), the score had an area under the curve of 0.72 with a misclassification rate of 0.12. After dividing the score into 4 quartiles of risk, 30-day mortality in the derivation and validation sets was 3.6% and 4.4% in quartile 1, 4.9% and 7.3% in quartile 2, 9.9% and 9.1% in quartile 3, and 24% and 26% in quartile 4, respectively.

CONCLUSIONS

A clinical tool can be used to predict 30-day mortality in patients hospitalized with lower gastrointestinal bleeding.

摘要

背景

预测哪些下消化道出血患者有不良结局风险的数据有限。我们旨在开发一种基于入院变量的临床工具,以预测下消化道出血患者的30天死亡率。

方法

我们使用经过验证的机器学习算法,识别2008年至2015年期间在一家学术医疗中心因下消化道出血住院的成年患者。该队列被随机分为推导队列和验证队列。在推导队列中,我们对所有候选入院变量进行多因素逻辑回归,以创建一个30天死亡率的预测模型,使用受试者工作特征曲线下面积和错误分类率来估计预测准确性。回归系数用于得出一个整数分数,并评估与总分相关的死亡风险。

结果

在推导队列(n = 4044)中,8个变量与30天死亡率最相关:年龄、痴呆、转移性癌症、慢性肾病、慢性肺病、抗凝剂使用、入院时血细胞比容和白蛋白。该模型的错误分类率为0.06,曲线下面积为0.81。在推导队列中,整数分数范围为-10至26,错误分类率为0.11,曲线下面积为0.74。在验证队列(n = 2060)中,该分数的曲线下面积为0.72,错误分类率为0.12。将分数分为4个风险四分位数后,推导集和验证集中第1四分位数的30天死亡率分别为3.6%和4.4%,第2四分位数为4.9%和7.3%,第3四分位数为9.9%和9.1%,第4四分位数为24%和26%。

结论

一种临床工具可用于预测因下消化道出血住院患者的30天死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验