Suppr超能文献

预防导致癌症的染色体易位。

PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.

作者信息

Hromas Robert, Williamson Elizabeth, Lee Suk-Hee, Nickoloff Jac

机构信息

GAINESVILLE, FLORIDA.

出版信息

Trans Am Clin Climatol Assoc. 2016;127:176-195.

Abstract

Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.

摘要

大约一半的癌症存在染色体易位,这些易位要么促成癌症的发生,要么控制其后续行为。根据定义,染色体易位只有在不同染色体上出现两个DNA双链断裂(DSB)并进行异源修复时才会发生。因此,染色体易位本质上是DNA DSB修复的问题。此类DNA DSB可来自内部或外部来源。可能导致易位的DNA DSB内部来源包括V(D)J重组或重链转换过程中不适当的免疫受体基因成熟。其他内部DNA DSB可来自异常的DNA结构,或在塌陷和反向的复制叉处产生。可导致染色体易位的DNA DSB外部来源是电离辐射和癌症化疗。有几种已知的核和染色质特性会增强易位而非同源染色体DSB修复。异源染色体区域彼此靠近会增加易位率。DSB处的组蛋白甲基化事件也会影响易位频率。有四种DNA DSB修复途径,但似乎只有一种,即替代性非同源末端连接(a-NHEJ)能够介导染色体易位。a-NHEJ的限速初始步骤是聚腺苷二磷酸核糖聚合酶1(PARP1)与DSB结合。在我们对预防致癌易位方法的研究中,我们发现PARP1是易位所必需的。重要的是,临床批准的PARP1抑制剂可阻断染色体易位的形成,首次提出了在高危患者中可降低继发性致癌易位的可能性。

相似文献

1
PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.
Trans Am Clin Climatol Assoc. 2016;127:176-195.
2
Mechanisms of oncogenic chromosomal translocations.
Ann N Y Acad Sci. 2014 Mar;1310:89-97. doi: 10.1111/nyas.12370. Epub 2014 Feb 16.
3
Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells.
Mutat Res Genet Toxicol Environ Mutagen. 2015 Nov;793:2-8. doi: 10.1016/j.mrgentox.2015.07.002. Epub 2015 Jul 4.
4
DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells.
PLoS Genet. 2019 Apr 4;15(4):e1008101. doi: 10.1371/journal.pgen.1008101. eCollection 2019 Apr.
6
PARP1 is required for chromosomal translocations.
Blood. 2013 May 23;121(21):4359-65. doi: 10.1182/blood-2012-10-460527. Epub 2013 Apr 8.
8
Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.
Nucleic Acids Res. 2014 Jun;42(10):6380-92. doi: 10.1093/nar/gku298. Epub 2014 Apr 19.
10
Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation.
Genes Chromosomes Cancer. 2016 Aug;55(8):650-60. doi: 10.1002/gcc.22367. Epub 2016 May 16.

引用本文的文献

1
Cellular Responses to Widespread DNA Replication Stress.
Int J Mol Sci. 2023 Nov 29;24(23):16903. doi: 10.3390/ijms242316903.
3
Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy.
Front Oncol. 2022 Jan 28;12:808757. doi: 10.3389/fonc.2022.808757. eCollection 2022.
4
Lack of associations between gene polymorphisms and neuroblastoma susceptibility in Chinese children.
J Cancer. 2019 Oct 3;10(23):5722-5726. doi: 10.7150/jca.33605. eCollection 2019.
5
Frequent homozygous deletions of the CDKN2A locus in somatic cancer tissues.
Mutat Res. 2019 May;815:30-40. doi: 10.1016/j.mrfmmm.2019.04.002. Epub 2019 Apr 25.
6
Translational research in radiation-induced DNA damage signaling and repair.
Transl Cancer Res. 2017 Jul;6(Suppl 5):S875-S891. doi: 10.21037/tcr.2017.06.02.
7
High-Throughput Analysis of DNA Break-Induced Chromosome Rearrangements by Amplicon Sequencing.
Methods Enzymol. 2018;601:111-144. doi: 10.1016/bs.mie.2017.11.028. Epub 2018 Feb 21.
8
Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair.
J Toxicol. 2017;2017:3574840. doi: 10.1155/2017/3574840. Epub 2017 Oct 10.
9
Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks.
Nucleic Acids Res. 2017 Dec 15;45(22):12848-12861. doi: 10.1093/nar/gkx1056.

本文引用的文献

1
DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
N Engl J Med. 2015 Oct 29;373(18):1697-708. doi: 10.1056/NEJMoa1506859.
2
Histone modifications predispose genome regions to breakage and translocation.
Genes Dev. 2015 Jul 1;29(13):1393-402. doi: 10.1101/gad.262170.115. Epub 2015 Jun 23.
3
The effects of chromatin organization on variation in mutation rates in the genome.
Nat Rev Genet. 2015 Apr;16(4):213-23. doi: 10.1038/nrg3890. Epub 2015 Mar 3.
4
Targeting signaling pathways in acute lymphoblastic leukemia: new insights.
Hematology Am Soc Hematol Educ Program. 2013;2013:118-25. doi: 10.1182/asheducation-2013.1.118.
5
PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies.
Ann Oncol. 2014 Jan;25(1):32-40. doi: 10.1093/annonc/mdt384. Epub 2013 Nov 12.
6
Molecular cytogenetics: recent developments and applications in cancer.
Clin Genet. 2013 Oct;84(4):315-25. doi: 10.1111/cge.12229. Epub 2013 Aug 6.
8
PARP1 is required for chromosomal translocations.
Blood. 2013 May 23;121(21):4359-65. doi: 10.1182/blood-2012-10-460527. Epub 2013 Apr 8.
9
Molecular pathogenesis of multiple myeloma: basic and clinical updates.
Int J Hematol. 2013 Mar;97(3):313-23. doi: 10.1007/s12185-013-1291-2. Epub 2013 Feb 28.
10
Mechanisms of programmed DNA lesions and genomic instability in the immune system.
Cell. 2013 Jan 31;152(3):417-29. doi: 10.1016/j.cell.2013.01.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验