Suppr超能文献

控制桃品质模型参数的等位基因组合优化

Optimization of Allelic Combinations Controlling Parameters of a Peach Quality Model.

作者信息

Quilot-Turion Bénédicte, Génard Michel, Valsesia Pierre, Memmah Mohamed-Mahmoud

机构信息

GAFL, INRA Montfavet, France.

PSH, INRA Avignon, France.

出版信息

Front Plant Sci. 2016 Dec 20;7:1873. doi: 10.3389/fpls.2016.01873. eCollection 2016.

Abstract

Process-based models are effective tools to predict the phenotype of an individual in different growing conditions. Combined with a quantitative trait locus (QTL) mapping approach, it is then possible to predict the behavior of individuals with any combinations of alleles. However the number of simulations to explore the realm of possibilities may become infinite. Therefore, the use of an efficient optimization algorithm to intelligently explore the search space becomes imperative. The optimization algorithm has to solve a multi-objective problem, since the phenotypes of interest are usually a complex of traits, to identify the individuals with best tradeoffs between those traits. In this study we proposed to unroll such a combined approach in the case of peach fruit quality described through three targeted traits, using a process-based model with seven parameters controlled by QTL. We compared a current approach based on the optimization of the values of the parameters with a more evolved way to proceed which consists in the direct optimization of the alleles controlling the parameters. The optimization algorithm has been adapted to deal with both continuous and combinatorial problems. We compared the spaces of parameters obtained with different tactics and the phenotype of the individuals resulting from random simulations and optimization in these spaces. The use of a genetic model enabled the restriction of the dimension of the parameter space toward more feasible combinations of parameter values, reproducing relationships between parameters as observed in a real progeny. The results of this study demonstrated the potential of such an approach to refine the solutions toward more realistic ideotypes. Perspectives of improvement are discussed.

摘要

基于过程的模型是预测个体在不同生长条件下表型的有效工具。结合数量性状位点(QTL)定位方法,就有可能预测具有任何等位基因组合的个体的行为。然而,探索各种可能性所需的模拟次数可能会变得无穷无尽。因此,使用高效的优化算法来智能地探索搜索空间变得势在必行。由于感兴趣的表型通常是一系列复杂的性状,优化算法必须解决一个多目标问题,以识别在这些性状之间具有最佳权衡的个体。在本研究中,我们提出在通过三个目标性状描述桃果实品质的情况下展开这样一种组合方法,使用一个基于过程的模型,该模型有七个由QTL控制的参数。我们将基于参数值优化的当前方法与一种更先进的方法进行了比较,后者在于直接优化控制参数的等位基因。优化算法已被调整以处理连续和组合问题。我们比较了用不同策略获得的参数空间以及在这些空间中随机模拟和优化产生的个体的表型。使用遗传模型能够将参数空间的维度限制为更可行的参数值组合,重现真实后代中观察到的参数之间的关系。本研究结果证明了这种方法在朝着更现实的理想型优化解决方案方面的潜力。还讨论了改进的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/5167719/9a5ddbdff4c4/fpls-07-01873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验