Suppr超能文献

数量遗传学与植物功能-结构生长模型:模型参数数量性状位点检测的模拟及在潜在产量优化中的应用

Quantitative genetics and functional-structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization.

作者信息

Letort Véronique, Mahe Paul, Cournède Paul-Henry, de Reffye Philippe, Courtois Brigitte

机构信息

Ecole Centrale of Paris, Laboratoire de Mathématiques Appliquées aux Systèmes, F-92295 Châtenay-Malabry cedex, France.

出版信息

Ann Bot. 2008 May;101(8):1243-54. doi: 10.1093/aob/mcm197. Epub 2007 Aug 31.

Abstract

BACKGROUND AND AIMS

Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization.

METHODS

The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination.

KEY RESULTS AND CONCLUSIONS

By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits--such as cob weight--and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand.

摘要

背景与目的

在未经测试的环境条件下,根据新基因型预测表型性状对于构建育种策略模拟以改善目标性状至关重要。尽管植物对环境胁迫的响应具有结构和功能可塑性的特征,但最近将生物学知识整合到遗传模型中的尝试主要涉及特定的生理过程或没有结构的作物模型,因此在研究基因型与环境相互作用时可能会受到限制。因此,本文提出了一项模拟研究,将遗传学引入功能-结构生长模型,从而获得更基本的性状用于数量性状位点(QTL)检测,进而为产量优化提供有前景的工具。

方法

选择GREENLAB模型作为将生长模型参数与QTL联系起来的合理选择。定义虚拟基因和虚拟染色体以构建一个简单的遗传模型,该模型驱动模型中物种特异性参数的设置。使用QTL Cartographer软件研究模拟植物性状的QTL检测。实施遗传算法以根据模型参数和相关等位基因组合定义产量最大化的理想型。

关键结果与结论

通过保持环境因素不变并使用由孟德尔遗传模型生成的大量个体的虚拟群体,可以模拟理想情况下的结果。比较了表型性状(如穗重)和性状为模型参数时的虚拟QTL检测,发现后者的检测更准确。通过计算与GREENLAB玉米模型产量优化相关的参数(以及相应的基因型),说明了该方法的实际意义。本文讨论了GREENLAB在表示环境与基因型相互作用方面的潜力,特别是通过其主要状态变量,即生物量供应与需求的比率。

相似文献

3
High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.
Plant Physiol. 2017 Mar;173(3):1554-1564. doi: 10.1104/pp.16.01516. Epub 2017 Jan 30.
6
Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.
PLoS One. 2015 Apr 29;10(4):e0124543. doi: 10.1371/journal.pone.0124543. eCollection 2015.
7
QTL detection for stover yield and quality traits using two connected populations in high-oil maize.
Plant Physiol Biochem. 2009 Oct;47(10):886-94. doi: 10.1016/j.plaphy.2009.06.001. Epub 2009 Jun 13.
9
Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize.
Theor Appl Genet. 2004 Dec;110(1):92-105. doi: 10.1007/s00122-004-1781-y. Epub 2004 Nov 12.
10
Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize.
Genet Mol Res. 2013 Apr 17;12(2):1243-53. doi: 10.4238/2013.April.17.3.

引用本文的文献

1
Functional-Structural Plant Model "GreenLab": A State-of-the-Art Review.
Plant Phenomics. 2024 Feb 7;6:0118. doi: 10.34133/plantphenomics.0118. eCollection 2024.
2
Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery.
Plant Phenomics. 2023 Sep 28;5:0091. doi: 10.34133/plantphenomics.0091. eCollection 2023.
3
Integration of Crop Growth Models and Genomic Prediction.
Methods Mol Biol. 2022;2467:359-396. doi: 10.1007/978-1-0716-2205-6_13.
4
Functional-Structural Plant Models Mission in Advancing Crop Science: Opportunities and Prospects.
Front Plant Sci. 2021 Dec 23;12:747142. doi: 10.3389/fpls.2021.747142. eCollection 2021.
5
Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model.
Front Genet. 2020 Dec 18;11:599510. doi: 10.3389/fgene.2020.599510. eCollection 2020.
6
Two decades of research with the GreenLab model in agronomy.
Ann Bot. 2021 Feb 9;127(3):281-295. doi: 10.1093/aob/mcaa172.
8
Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture.
Front Plant Sci. 2017 Jan 12;7:2065. doi: 10.3389/fpls.2016.02065. eCollection 2016.
9
Leaf Segmentation and Tracking in Combined to an Organ-Scale Plant Model for Genotypic Differentiation.
Front Plant Sci. 2017 Jan 11;7:2057. doi: 10.3389/fpls.2016.02057. eCollection 2016.
10
Optimization of Allelic Combinations Controlling Parameters of a Peach Quality Model.
Front Plant Sci. 2016 Dec 20;7:1873. doi: 10.3389/fpls.2016.01873. eCollection 2016.

本文引用的文献

1
Model-assisted physiological analysis of Phyllo, a rice architectural mutant.
Funct Plant Biol. 2007 Feb;34(1):11-23. doi: 10.1071/FP06180.
2
Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny.
Ann Bot. 2007 Mar;99(3):375-407. doi: 10.1093/aob/mcl260. Epub 2007 Jan 11.
4
Models for navigating biological complexity in breeding improved crop plants.
Trends Plant Sci. 2006 Dec;11(12):587-93. doi: 10.1016/j.tplants.2006.10.006. Epub 2006 Nov 7.
5
Parameter optimization and field validation of the functional-structural model GREENLAB for maize.
Ann Bot. 2006 Feb;97(2):217-30. doi: 10.1093/aob/mcj033. Epub 2006 Jan 3.
6
Role of crop physiology in predicting gene-to-phenotype relationships.
Trends Plant Sci. 2004 Sep;9(9):426-32. doi: 10.1016/j.tplants.2004.07.007.
7
A dynamic, architectural plant model simulating resource-dependent growth.
Ann Bot. 2004 May;93(5):591-602. doi: 10.1093/aob/mch078. Epub 2004 Mar 31.
10
Virtual plants: modelling as a tool for the genomics of tolerance to water deficit.
Trends Plant Sci. 2003 Jan;8(1):9-14. doi: 10.1016/s1360-1385(02)00008-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验