Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 10617, Taiwan.
Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan.
ACS Nano. 2017 Mar 28;11(3):2575-2585. doi: 10.1021/acsnano.6b05601. Epub 2017 Jan 13.
Viral infection starts with a virus particle landing on a cell surface followed by penetration of the plasma membrane. Due to the difficulty of measuring the rapid motion of small-sized virus particles on the membrane, little is known about how a virus particle reaches an endocytic site after landing at a random location. Here, we use coherent brightfield (COBRI) microscopy to investigate early stage viral infection with ultrahigh spatiotemporal resolution. By detecting intrinsic scattered light via imaging-based interferometry, COBRI microscopy allows us to track the motion of a single vaccinia virus particle with nanometer spatial precision (<3 nm) in 3D and microsecond temporal resolution (up to 100,000 frames per second). We explore the possibility of differentiating the virus signal from cell background based on their distinct spatial and temporal behaviors via digital image processing. Through image postprocessing, relatively stationary background scattering of cellular structures is effectively removed, generating a background-free image of the diffusive virus particle for precise localization. Using our method, we unveil single virus particles exploring cell plasma membranes after attachment. We found that immediately after attaching to the membrane (within a second), the virus particle is locally confined within hundreds of nanometers where the virus particle diffuses laterally with a very high diffusion coefficient (∼1 μm/s) at microsecond time scales. Ultrahigh-speed scattering-based optical imaging may provide opportunities for resolving rapid virus-receptor interactions with nanometer clarity.
病毒感染始于病毒颗粒落在细胞膜表面,随后穿透质膜。由于难以测量病毒颗粒在膜上的快速运动,因此对于病毒颗粒在随机位置着陆后如何到达内吞部位知之甚少。在这里,我们使用相干明场(COBRI)显微镜以超高时空分辨率研究早期病毒感染。通过基于成像的干涉测量法检测固有散射光,COBRI 显微镜使我们能够以纳米空间精度(<3nm)在 3D 中跟踪单个牛痘病毒颗粒的运动,并具有微秒时间分辨率(高达每秒 10 万帧)。我们探索了通过数字图像处理基于其独特的时空行为从细胞背景中区分病毒信号的可能性。通过图像后处理,有效地去除了细胞结构的相对静止背景散射,为精确定位生成了无背景的扩散病毒颗粒图像。使用我们的方法,我们揭示了附着后在细胞膜上探索的单个病毒颗粒。我们发现,病毒颗粒在附着后立即(在一秒内)被局部限制在几百纳米内,病毒颗粒在微秒时间尺度上以非常高的扩散系数(∼1μm/s)侧向扩散。基于超高速度散射的光学成像可能为解析具有纳米清晰度的快速病毒-受体相互作用提供机会。