Fowler Philip W, Sansom Mark S P, Reithmeier Reinhart A F
Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.
Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
Biochemistry. 2017 Feb 7;56(5):712-722. doi: 10.1021/acs.biochem.6b00966. Epub 2017 Jan 23.
The first transmembrane (TM1) helix in the red cell anion exchanger (AE1, Band 3, or SLC4A1) acts as an internal signal anchor that binds the signal recognition particle and directs the nascent polypeptide chain to the endoplasmic reticulum (ER) membrane where it moves from the translocon laterally into the lipid bilayer. The sequence N-terminal to TM1 forms an amphipathic helix that lies at the membrane interface and is connected to TM1 by a bend at Pro403. Southeast Asian ovalocytosis (SAO) is a red cell abnormality caused by a nine-amino acid deletion (Ala400-Ala408) at the N-terminus of TM1. Here we demonstrate, by extensive (∼4.5 μs) molecular dynamics simulations of TM1 in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane, that the isolated TM1 peptide is highly dynamic and samples the structure of TM1 seen in the crystal structure of the membrane domain of AE1. The SAO deletion not only removes the proline-induced bend but also causes a "pulling in" of the part of the amphipathic helix into the hydrophobic phase of the bilayer, as well as the C-terminal of the peptide. The dynamics of the SAO peptide very infrequently resembles the structure of TM1 in AE1, demonstrating the disruptive effect the SAO deletion has on AE1 folding. These results provide a precise molecular view of the disposition and dynamics of wild-type and SAO TM1 in a lipid bilayer, an important early biosynthetic intermediate in the insertion of AE1 into the ER membrane, and extend earlier results of cell-free translation experiments.
红细胞阴离子交换蛋白(AE1、带3或SLC4A1)中的第一个跨膜(TM1)螺旋作为一个内部信号锚,可结合信号识别颗粒,并将新生多肽链引导至内质网(ER)膜,在那里它从转运体横向进入脂质双层。TM1 N端的序列形成一个两性螺旋,位于膜界面,通过Pro403处的弯曲与TM1相连。东南亚椭圆形红细胞增多症(SAO)是一种红细胞异常,由TM1 N端的九个氨基酸缺失(Ala400 - Ala408)引起。在这里,我们通过在1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸胆碱模型膜中对TM1进行广泛的(约4.5微秒)分子动力学模拟,证明分离的TM1肽具有高度动态性,并呈现出AE1膜结构域晶体结构中所见的TM1结构。SAO缺失不仅消除了脯氨酸诱导的弯曲,还导致两性螺旋的一部分“拉入”双层的疏水相以及肽的C端。SAO肽的动力学很少类似于AE1中TM1的结构,这表明SAO缺失对AE1折叠具有破坏作用。这些结果提供了野生型和SAO TM1在脂质双层中的分布和动力学的精确分子视图,脂质双层是AE插入ER膜过程中的一个重要早期生物合成中间体,并扩展了无细胞翻译实验的早期结果。