Suppr超能文献

用于计算二阶维纳核和脉冲触发协方差的图形处理单元加速代码

Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance.

作者信息

Mano Omer, Clark Damon A

机构信息

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America.

Department of Physics, Yale University, New Haven, Connecticut, United States of America.

出版信息

PLoS One. 2017 Jan 9;12(1):e0169842. doi: 10.1371/journal.pone.0169842. eCollection 2017.

Abstract

Sensory neuroscience seeks to understand and predict how sensory neurons respond to stimuli. Nonlinear components of neural responses are frequently characterized by the second-order Wiener kernel and the closely-related spike-triggered covariance (STC). Recent advances in data acquisition have made it increasingly common and computationally intensive to compute second-order Wiener kernels/STC matrices. In order to speed up this sort of analysis, we developed a graphics processing unit (GPU)-accelerated module that computes the second-order Wiener kernel of a system's response to a stimulus. The generated kernel can be easily transformed for use in standard STC analyses. Our code speeds up such analyses by factors of over 100 relative to current methods that utilize central processing units (CPUs). It works on any modern GPU and may be integrated into many data analysis workflows. This module accelerates data analysis so that more time can be spent exploring parameter space and interpreting data.

摘要

感觉神经科学旨在理解和预测感觉神经元如何对刺激做出反应。神经反应的非线性成分通常由二阶维纳核和密切相关的脉冲触发协方差(STC)来表征。数据采集方面的最新进展使得计算二阶维纳核/STC矩阵变得越来越普遍且计算量很大。为了加快这类分析,我们开发了一个图形处理单元(GPU)加速模块,用于计算系统对刺激的反应的二阶维纳核。生成的核可以很容易地转换用于标准的STC分析。相对于当前使用中央处理器(CPU)的方法,我们的代码将此类分析速度提高了100多倍。它适用于任何现代GPU,并且可以集成到许多数据分析工作流程中。该模块加速了数据分析,以便有更多时间用于探索参数空间和解释数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee5/5222505/9a38e9fd546b/pone.0169842.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验