Suppr超能文献

使用高密度多电极阵列对大型神经群体进行尖峰检测。

Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays.

作者信息

Muthmann Jens-Oliver, Amin Hayder, Sernagor Evelyne, Maccione Alessandro, Panas Dagmara, Berdondini Luca, Bhalla Upinder S, Hennig Matthias H

机构信息

Manipal UniversityManipal, India; Department of Neurobiology, National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India; School of Informatics, Institute for Adaptive and Neural Computation, University of EdinburghEdinburgh, UK.

Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy.

出版信息

Front Neuroinform. 2015 Dec 18;9:28. doi: 10.3389/fninf.2015.00028. eCollection 2015.

Abstract

An emerging generation of high-density microelectrode arrays (MEAs) is now capable of recording spiking activity simultaneously from thousands of neurons with closely spaced electrodes. Reliable spike detection and analysis in such recordings is challenging due to the large amount of raw data and the dense sampling of spikes with closely spaced electrodes. Here, we present a highly efficient, online capable spike detection algorithm, and an offline method with improved detection rates, which enables estimation of spatial event locations at a resolution higher than that provided by the array by combining information from multiple electrodes. Data acquired with a 4096 channel MEA from neuronal cultures and the neonatal retina, as well as synthetic data, was used to test and validate these methods. We demonstrate that these algorithms outperform conventional methods due to a better noise estimate and an improved signal-to-noise ratio (SNR) through combining information from multiple electrodes. Finally, we present a new approach for analyzing population activity based on the characterization of the spatio-temporal event profile, which does not require the isolation of single units. Overall, we show how the improved spatial resolution provided by high density, large scale MEAs can be reliably exploited to characterize activity from large neural populations and brain circuits.

摘要

新一代高密度微电极阵列(MEA)现在能够通过紧密排列的电极同时记录数千个神经元的尖峰活动。由于原始数据量巨大且电极间距紧密导致尖峰采样密集,在这种记录中进行可靠的尖峰检测和分析具有挑战性。在这里,我们提出了一种高效的、可在线运行的尖峰检测算法,以及一种检测率更高的离线方法,该方法通过组合多个电极的信息,能够以高于阵列提供的分辨率估计空间事件位置。使用从神经元培养物和新生视网膜的4096通道MEA采集的数据以及合成数据来测试和验证这些方法。我们证明,这些算法由于通过组合多个电极的信息获得了更好的噪声估计和改进的信噪比(SNR),因而优于传统方法。最后,我们提出了一种基于时空事件轮廓特征分析群体活动的新方法,该方法不需要分离单个单元。总体而言,我们展示了如何可靠地利用高密度、大规模MEA提供的更高空间分辨率来表征来自大型神经群体和脑回路的活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a39/4683190/92d738c19b2e/fninf-09-00028-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验