Suppr超能文献

神经元脉冲序列分析,解构剖析。

Analysis of Neuronal Spike Trains, Deconstructed.

作者信息

Aljadeff Johnatan, Lansdell Benjamin J, Fairhall Adrienne L, Kleinfeld David

机构信息

Department of Physics, University of California, San Diego, San Diego, CA 92093, USA; Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

出版信息

Neuron. 2016 Jul 20;91(2):221-59. doi: 10.1016/j.neuron.2016.05.039.

Abstract

As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in which the external variable is compared with one or more feature vectors to extract a low-dimensional representation, the history of spiking and other variables are potentially incorporated, and these factors are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in application to datasets of different degrees of complexity. In particular, we address the fitting of models in the presence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation between predicted and measured spike trains is introduced to contrast the relative success of different methods.

摘要

当信息在大脑中流动时,神经元放电从对动物所感知的世界进行编码,发展到驱动后续行为的运动输出。定量神经科学中一个更容易处理的目标是开发将感觉或运动流与神经元放电联系起来的预测模型。在这里,我们回顾并对比用于完成这项任务的分析工具。我们关注的模型类别是,将外部变量与一个或多个特征向量进行比较以提取低维表示,潜在地纳入尖峰历史和其他变量,并对这些因素进行非线性变换以预测尖峰的出现。我们在应用于不同复杂程度的数据集时展示这些技术。特别是,我们处理在外部变量存在强相关性的情况下模型的拟合问题,这在自然感觉刺激和运动中都会出现。引入预测尖峰序列与实测尖峰序列之间的频谱相关性,以对比不同方法的相对成功程度。

相似文献

1
Analysis of Neuronal Spike Trains, Deconstructed.神经元脉冲序列分析,解构剖析。
Neuron. 2016 Jul 20;91(2):221-59. doi: 10.1016/j.neuron.2016.05.039.
2
Finding the event structure of neuronal spike trains.寻找神经元尖峰序列的事件结构。
Neural Comput. 2011 Sep;23(9):2169-208. doi: 10.1162/NECO_a_00173. Epub 2011 Jun 14.
3
Learning precisely timed spikes.学习精确时间的尖峰。
Neuron. 2014 May 21;82(4):925-38. doi: 10.1016/j.neuron.2014.03.026. Epub 2014 Apr 24.
5
Decoding neuronal spike trains: how important are correlations?解码神经元放电序列:相关性有多重要?
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7348-53. doi: 10.1073/pnas.1131895100. Epub 2003 May 29.
6
Rate-synchrony relationship between input and output of spike trains in neuronal networks.神经网络中尖峰序列输入与输出之间的速率同步关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011917. doi: 10.1103/PhysRevE.81.011917. Epub 2010 Jan 28.
8
Generation of correlated spike trains.相关脉冲序列的生成。
Neural Comput. 2009 Jan;21(1):188-215. doi: 10.1162/neco.2008.12-07-657.

引用本文的文献

1
Inferring neural population codes for acoustic communication.推断用于声学通信的神经群体编码。
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2417733122. doi: 10.1073/pnas.2417733122. Epub 2025 May 19.
2
Whisking and locomotion are jointly represented in superior colliculus neurons.上丘神经元共同表征了快速扫视和运动。
PLoS Biol. 2025 Apr 7;23(4):e3003087. doi: 10.1371/journal.pbio.3003087. eCollection 2025 Apr.
3
Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields.非初级听觉皮层感受野的稀疏高维分解
PLoS Comput Biol. 2025 Jan 2;21(1):e1012721. doi: 10.1371/journal.pcbi.1012721. eCollection 2025 Jan.
4
Identification of movie encoding neurons enables movie recognition AI.电影编码神经元的识别使电影识别人工智能成为可能。
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2412260121. doi: 10.1073/pnas.2412260121. Epub 2024 Nov 19.
7
Visual neurons recognize complex image transformations.视觉神经元能够识别复杂的图像变换。
bioRxiv. 2024 Jun 10:2024.06.10.598314. doi: 10.1101/2024.06.10.598314.
8
Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex.长波长血管运动行波调节皮质灌注。
Neuron. 2024 Jul 17;112(14):2349-2367.e8. doi: 10.1016/j.neuron.2024.04.034. Epub 2024 May 22.
9
Introducing the STReaC (Spike Train Response Classification) toolbox.介绍 STReaC(Spike Train Response Classification)工具包。
J Neurosci Methods. 2024 Jan 1;401. doi: 10.1016/j.jneumeth.2023.110000. Epub 2023 Oct 30.
10
Modeling the diverse effects of divisive normalization on noise correlations.对分歧归一化对噪声相关性的多种影响进行建模。
PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.

本文引用的文献

1
Dimensionality reduction in neuroscience.神经科学中的降维
Curr Biol. 2016 Jul 25;26(14):R656-60. doi: 10.1016/j.cub.2016.05.029.
2
Inhibition, Not Excitation, Drives Rhythmic Whisking.抑制而非兴奋驱动节律性触须运动。
Neuron. 2016 Apr 20;90(2):374-87. doi: 10.1016/j.neuron.2016.03.007. Epub 2016 Mar 31.
6
Detecting the unexpected.发现意外情况。
Curr Opin Neurobiol. 2015 Dec;35:142-7. doi: 10.1016/j.conb.2015.08.003. Epub 2015 Aug 25.
9
Diverse coupling of neurons to populations in sensory cortex.神经元与感觉皮层中神经元群体的多种耦合。
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验