Suppr超能文献

钴硫化物纳米颗粒锚定在三维碳纳米片网络中,用于锂离子和钠离子电池,具有增强的电化学性能。

Cobalt sulfide nanoparticles anchored in three-dimensional carbon nanosheet networks for lithium and sodium ion batteries with enhanced electrochemical performance.

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.

出版信息

J Colloid Interface Sci. 2017 Apr 15;492:41-50. doi: 10.1016/j.jcis.2016.12.071. Epub 2016 Dec 31.

Abstract

In order to improve the conductivity and electrochemical activity, CoS nanoparticles anchored in three-dimensional carbon nanosheet networks (3D CoS@CNNs) are fabricated by a simple strategy with the assistance of NaCl. Combining the advantages of nanoscale and porous structure, 3D CoS@CNNs can retard the aggregation of CoS nanoparticles, provide abundant electrochemical active sites, as well as accommodate the mechanical stress during the cycling of lithium ion batteries (LIBs) or sodium ion batteries (SIBs). Thus, when evaluated as an anode for LIBs, the as-prepared 3D CoS@CNNs electrode exhibits outstanding electrochemical performance with a high reversible capacity of 935mAhg after 200 cycles at 0.25Ag. As for SIBs, it also delivers superior cycling stability with a capacity of 249mAhg after 50 cycles at 0.1Ag. These results demonstrate that 3D CoS@CNNs composite has potential to be utilized as an anode material for LIBs/SIBs with enhanced electrochemical performance.

摘要

为了提高导电性和电化学活性,在 NaCl 的辅助下,采用一种简单的策略制备了锚定在三维碳纳米片网络中的 CoS 纳米粒子(3D CoS@CNNs)。3D CoS@CNNs 结合了纳米级和多孔结构的优势,可以阻止 CoS 纳米粒子的聚集,提供丰富的电化学活性位点,并适应锂离子电池(LIBs)或钠离子电池(SIBs)循环过程中的机械应力。因此,当作为 LIBs 的阳极进行评估时,所制备的 3D CoS@CNNs 电极在 0.25Ag 下循环 200 次后具有 935mAhg 的高可逆容量,表现出出色的电化学性能。对于 SIBs,它在 0.1Ag 下循环 50 次后也具有出色的循环稳定性,容量为 249mAhg。这些结果表明,3D CoS@CNNs 复合材料具有作为 LIBs/SIBs 增强电化学性能的阳极材料的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验