Franke-Arnold Sonja
SUPA and School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
Philos Trans A Math Phys Eng Sci. 2017 Feb 28;375(2087). doi: 10.1098/rsta.2015.0435.
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'.
光与原子之间的任何相干相互作用都需要守恒能量、线性动量和角动量。如果一个原子遇到携带轨道角动量(OAM)的光,其角动量会发生什么变化?这是一个特别有趣的问题,因为原子的角动量是量子化的,它包含单个电子的固有自旋角动量以及与其空间分布相关的轨道角动量。此外,整个原子的旋转会产生机械角动量,对于极冷的原子来说,这种角动量也是量子化的。因此,原子使我们能够探测和获取光的轨道角动量的量子特性,有助于我们从根本上理解光与物质的相互作用,而且,还使我们能够构建基于轨道角动量的应用,包括量子存储器、用于整形光的频率转换器以及基于轨道角动量的传感器。本文是主题为“光学轨道角动量”的特刊的一部分。