Amico Luigi, Aghamalyan Davit, Auksztol Filip, Crepaz Herbert, Dumke Rainer, Kwek Leong Chuan
CNR-MATIS-IMM & Dipartimento di Fisica e Astronomia, Via S. Sofia 64, 95127 Catania, Italy Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616.
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543.
Sci Rep. 2014 Mar 6;4:4298. doi: 10.1038/srep04298.
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit.
我们研究了一种利用中性原子电流的实验可行的量子比特系统。我们的系统基于捕获在环形光学晶格势中的玻色冷原子。该晶格使系统严格为一维,并提供了实现可调谐环-环相互作用的基础设施。我们的实现方式结合了中性冷原子系统的低退相干率、克服单比特寻址问题的能力,以及拓扑保护的固态约瑟夫森磁通量子比特的鲁棒性。利用中性原子作为磁通载体,预计会使影响基于约瑟夫森结的磁通量子比特的磁场中的特征波动最小化。通过打破伽利略不变性,我们展示了通过晶格的原子电流如何实现量子比特。这可以通过在单个环中人为地产生相位滑移,或者通过两个均匀环晶格的隧道耦合来实现。利用定制的光学势对单量子比特基础设施进行了实验研究。实际上,我们已经通过实验实现了按比例缩放的环晶格势,原则上可以沿着激光束传播轴以堆叠配置容纳约n = 10个这样的环量子比特。还讨论了一种实验可行的双环量子比特方案。基于我们的分析,我们提供了初始化、寻址和读取量子比特的协议。