Arikawa T, Hiraoka T, Morimoto S, Blanchard F, Tani S, Tanaka T, Sakai K, Kitajima H, Sasaki K, Tanaka K
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
Department of Electrical Engineering, École de technologie supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada.
Sci Adv. 2020 Jun 12;6(24):eaay1977. doi: 10.1126/sciadv.aay1977. eCollection 2020 Jun.
The emergence of the vortex beam with orbital angular momentum (OAM) has provided intriguing possibilities to induce optical transitions beyond the framework of the electric dipole interaction. The uniqueness stems from the OAM transfer from light to material, as demonstrated in electronic transitions in atomic systems. In this study, we report on the OAM transfer to electrons in solid-state systems, which has been elusive to date. Using metamaterials (periodically textured metallic disks), we show that multipolar modes of the surface electromagnetic excitations (so-called spoof localized surface plasmons) are selectively induced by the terahertz vortex beam. Our results reveal selection rules governed by the conservation of the total angular momentum, which is confirmed by numerical simulations. The efficient transfer of light's OAM to elementary excitations in solid-state systems at room temperature opens up new possibilities of OAM manipulation.
具有轨道角动量(OAM)的涡旋光束的出现为诱导超出电偶极相互作用框架的光学跃迁提供了引人入胜的可能性。其独特性源于从光到物质的OAM转移,这在原子系统的电子跃迁中得到了证明。在本研究中,我们报道了OAM向固态系统中电子的转移,这在迄今为止一直难以捉摸。使用超材料(周期性纹理化金属盘),我们表明太赫兹涡旋光束选择性地诱导了表面电磁激发的多极模式(所谓的仿表面等离激元)。我们的结果揭示了由总角动量守恒支配的选择规则,这通过数值模拟得到了证实。在室温下将光的OAM有效转移到固态系统中的基本激发上,为OAM操纵开辟了新的可能性。