Suppr超能文献

转化生长因子-β1/ Smad3信号通路靶向蛋白磷酸酶2A-腺苷酸活化蛋白激酶-叉头框蛋白O1信号传导以调节肝脏糖异生

TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

作者信息

Yadav Hariom, Devalaraja Samir, Chung Stephanie T, Rane Sushil G

机构信息

Diabetes, Endocrinology, and Obesity Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20854.

Diabetes, Endocrinology, and Obesity Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20854.

出版信息

J Biol Chem. 2017 Feb 24;292(8):3420-3432. doi: 10.1074/jbc.M116.764910. Epub 2017 Jan 9.

Abstract

Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance.

摘要

维持葡萄糖稳态对正常生理功能至关重要。血糖水平偏离正常范围,无论升高还是降低,都会增加患低血糖和糖尿病等严重医学并发症的易感性。葡萄糖稳态的维持是通过肝脏、骨骼肌、脂肪组织、大脑和内分泌胰腺等各种器官之间的功能相互作用来实现的。肝脏是内源性葡萄糖生成的主要部位,尤其是在长期禁食状态下。然而,糖异生增强也是2型糖尿病(T2D)的一个标志性特征。因此,阐明调节肝脏糖异生的信号通路将有助于更好地了解正常内源性葡萄糖生成过程以及该过程在T2D中是如何受损的。在此,我们证明TGF-β1/Smad3信号通路在长期禁食和T2D期间均促进肝脏糖异生。相反,对TGF-β1/Smad3信号的基因和药理学抑制会抑制内源性葡萄糖生成。TGF-β1和Smad3信号通过靶向肝脏糖异生的关键调节因子蛋白磷酸酶2A(PP2A)、AMP激活的蛋白激酶(AMPK)和FoxO1蛋白来实现这一效应。具体而言,TGF-β1信号抑制LKB1-AMPK轴,从而促进FoxO1的核转位并激活关键的糖异生基因葡萄糖-6-磷酸酶和磷酸烯醇式丙酮酸羧激酶。这些发现强调了TGF-β1/Smad3信号在肝脏糖异生中的重要作用,无论是在正常生理状态还是在糖尿病等代谢疾病的病理生理学中,因此具有重要的医学意义。

相似文献

1
TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.
J Biol Chem. 2017 Feb 24;292(8):3420-3432. doi: 10.1074/jbc.M116.764910. Epub 2017 Jan 9.
2
Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling.
Diabetologia. 2023 Jun;66(6):1142-1155. doi: 10.1007/s00125-023-05889-5. Epub 2023 Mar 14.
4
GDF15 activates AMPK and inhibits gluconeogenesis and fibrosis in the liver by attenuating the TGF-β1/SMAD3 pathway.
Metabolism. 2024 Mar;152:155772. doi: 10.1016/j.metabol.2023.155772. Epub 2024 Jan 3.
5
Lipocalin-2: a role in hepatic gluconeogenesis via AMP-activated protein kinase (AMPK).
J Endocrinol Invest. 2021 Aug;44(8):1753-1765. doi: 10.1007/s40618-020-01494-0. Epub 2021 Jan 9.
6
Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes.
FASEB J. 2020 Aug;34(8):10056-10072. doi: 10.1096/fj.202000115RR. Epub 2020 Jun 24.
7
Transcription Factor Forkhead Box O1 Mediates Transforming Growth Factor-β1-Induced Apoptosis in Hepatocytes.
Am J Pathol. 2023 Sep;193(9):1143-1155. doi: 10.1016/j.ajpath.2023.05.007. Epub 2023 May 31.

引用本文的文献

1
Integrated plasma metabolomic and proteomic analysis uncover the effects and mechanisms of isotretinoin in severe acne.
Front Pharmacol. 2025 Aug 8;16:1590820. doi: 10.3389/fphar.2025.1590820. eCollection 2025.
2
Effect of resveratrol on key signaling pathways including SIRT1/AMPK/Smad3/TGF-β and miRNA-141 related to NAFLD in an animal model.
Res Pharm Sci. 2025 Jun 17;20(3):434-444. doi: 10.4103/RPS.RPS_220_24. eCollection 2025 Jun.
3
CHIP mediates glucagon action on hepatic glucose production via regulating Smad3 ubiquitination.
Diabetes Obes Metab. 2025 Aug;27(8):4499-4510. doi: 10.1111/dom.16493. Epub 2025 Jun 4.
6
TGF1, SNAIL2, and PAPP-A Expression in Placenta of Gestational Diabetes Mellitus Patients.
J Diabetes Res. 2024 Jul 30;2024:1386469. doi: 10.1155/2024/1386469. eCollection 2024.
7
1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit.
Int J Mol Sci. 2024 Apr 18;25(8):4440. doi: 10.3390/ijms25084440.
8
TGF-β1 Signaling Impairs Metformin Action on Glycemic Control.
Int J Mol Sci. 2024 Feb 19;25(4):2424. doi: 10.3390/ijms25042424.
9
Abnormalities in microbiota/butyrate/FFAR3 signaling in aging gut impair brain function.
JCI Insight. 2024 Feb 8;9(3):e168443. doi: 10.1172/jci.insight.168443.
10
Association between single nucleotide polymorphisms, TGF-β1 promoter methylation, and polycystic ovary syndrome.
BMC Pregnancy Childbirth. 2024 Jan 2;24(1):5. doi: 10.1186/s12884-023-06210-3.

本文引用的文献

1
HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling.
Cell Metab. 2016 Mar 8;23(3):505-16. doi: 10.1016/j.cmet.2016.01.004. Epub 2016 Feb 4.
3
Immunomodulatory effects of transforming growth factor-β in the liver.
Hepatobiliary Surg Nutr. 2014 Dec;3(6):386-406. doi: 10.3978/j.issn.2304-3881.2014.11.06.
4
Artificial biomelanin: highly light-absorbing nano-sized eumelanin by biomimetic synthesis in chicken egg white.
Biomacromolecules. 2014 Oct 13;15(10):3811-6. doi: 10.1021/bm501139h. Epub 2014 Sep 29.
5
Control of gluconeogenesis by metformin: does redox trump energy charge?
Cell Metab. 2014 Aug 5;20(2):197-9. doi: 10.1016/j.cmet.2014.07.013.
6
AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle.
Pediatr Pulmonol. 2014 Sep;49(9):885-97. doi: 10.1002/ppul.22919. Epub 2013 Oct 25.
7
Targeting the TGFβ signalling pathway in disease.
Nat Rev Drug Discov. 2012 Oct;11(10):790-811. doi: 10.1038/nrd3810. Epub 2012 Sep 24.
8
AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity.
Mol Cell Endocrinol. 2013 Feb 25;366(2):135-51. doi: 10.1016/j.mce.2012.06.019. Epub 2012 Jun 28.
9
Metabolism: an Akt-independent pathway for regulation of gluconeogenesis.
Nat Rev Endocrinol. 2012 Mar 6;8(5):257. doi: 10.1038/nrendo.2012.34.
10
Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling.
Cell Metab. 2011 Jul 6;14(1):67-79. doi: 10.1016/j.cmet.2011.04.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验