Gong Jing, Wang Xing-Zhi, Wang Tao, Chen Jiao-Jiao, Xie Xiao-Yuan, Hu Hui, Yu Fang, Liu Hui-Lin, Jiang Xing-Yan, Fan Han-Dong
Sichuan Radio and TV University, Chengdu 610073, China.
Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China.
J Zhejiang Univ Sci B. 2017;18(1):1-14. doi: 10.1631/jzus.B1600043.
Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α)). Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-γ (PLCγ)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IRE1α also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response.
在细胞内,存在多种机制来维持内质网(ER)的稳态。其中一个主要机制是未折叠蛋白反应(UPR)。在本综述中,我们主要关注UPR的最新信号网络和调控机制。还讨论了内质网应激、细胞凋亡和癌症之间的关系。在正常状态下,结合免疫球蛋白蛋白(BiP)与三种传感器(蛋白激酶RNA样内质网激酶(PERK)、激活转录因子6(ATF6)和肌醇需求酶1α(IRE1α))相互作用。在内质网应激下,错误折叠的蛋白质与BiP相互作用,导致BiP从传感器上释放。随后,这三种传感器二聚化并自磷酸化,以促进内质网应激的信号级联反应。内质网应激包括一系列正反馈和负反馈信号,例如调节传感器/BiP复合物稳定性的信号、通过自磷酸化和去磷酸化激活和失活传感器的信号、激活特定转录因子以实现选择性转录的信号,以及增强重新折叠和输出能力的信号。除了这三条基本途径外,仅在实体瘤中诱导的血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)-磷脂酶C-γ(PLCγ)-雷帕霉素复合物1的哺乳动物靶点(mTORC1)途径,也可以激活ATF6和PERK信号级联反应,并且IRE1α也可以被激活的RAC-α丝氨酸/苏氨酸蛋白激酶(AKT)激活。适度的UPR作为一种促生存信号,使细胞恢复到稳态。然而,当细胞损伤超过这种适应性反应的能力时,持续的内质网应激将诱导细胞响应增加的活性氧(ROS)、细胞质基质中的Ca以及其他细胞凋亡信号级联反应(如c-Jun氨基末端激酶(JNK)、信号转导和转录激活因子3(STAT3)和P38)而发生凋亡。