Yang Ki Dong, Lee Chan Woo, Jin Kyoungsuk, Im Sang Won, Nam Ki Tae
Department of Materials Science and Engineering, Seoul National University , Seoul 151-744, Korea.
J Phys Chem Lett. 2017 Jan 19;8(2):538-545. doi: 10.1021/acs.jpclett.6b02748. Epub 2017 Jan 11.
Electrocatalytic conversion of CO into a long-chain hydrocarbon represents an important research direction in adding value to CO-based chemicals and realizing its practical application. Long-chain hydrocarbons may change the current fossil fuel-based industry in that those chemicals have a similar energy density as gasoline, high compatibility with the current infrastructure, and low hydroscopicity for pipeline distribution. However, most of the electrocatalysts produce C, C, and C chemicals, and methods for producing long-chain hydrocarbons are not available thus far. Interestingly, nature utilizes many enzymes to generate long-chain hydrocarbons using C building blocks and suggests key mechanisms, inspiring new perspective in the design of electrocatalysts. In this Perspective, we present case studies to demonstrate how CO and its reductive derivatives interact with the electrode surface during C-C bond formation and introduce how these issues are addressed in biological systems. We end this Perspective by outlining possible strategies to translate the natural mechanism into a heterogeneous electrode.
将一氧化碳电催化转化为长链碳氢化合物是提高一氧化碳基化学品附加值并实现其实际应用的一个重要研究方向。长链碳氢化合物可能会改变当前以化石燃料为基础的产业,因为这些化学品具有与汽油相似的能量密度、与现有基础设施的高兼容性以及用于管道输送时的低吸湿性。然而,大多数电催化剂生成的是C1、C2和C3化学品,目前尚无生产长链碳氢化合物的方法。有趣的是,自然界利用多种酶以C1构建单元生成长链碳氢化合物,并揭示了关键机制,为电催化剂的设计带来了新的视角。在这篇展望文章中,我们展示了一些案例研究,以说明在碳-碳键形成过程中一氧化碳及其还原衍生物如何与电极表面相互作用,并介绍这些问题在生物系统中是如何解决的。我们通过概述将自然机制转化为非均相电极的可能策略来结束这篇展望文章。