Suppr超能文献

在晶格应变稳定的氮掺杂铜表面上进行高效碳电合成。

High-efficiency C electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface.

作者信息

Niu Wenzhe, Feng Jie, Chen Junfeng, Deng Lei, Guo Wen, Li Huajing, Zhang Liqiang, Li Youyong, Zhang Bo

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China.

Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China.

出版信息

Nat Commun. 2024 Aug 16;15(1):7070. doi: 10.1038/s41467-024-51478-4.

Abstract

The synthesis of multi-carbon (C) fuels via electrocatalytic reduction of CO, HO using renewable electricity, represents a significant stride in sustainable energy storage and carbon recycling. The foremost challenge in this field is the production of extended-chain carbon compounds (C, n ≥ 3), wherein elevated CO coverage (θ) and its subsequent multiple-step coupling are both critical. Notwithstanding, there exists a "seesaw" dynamic between intensifying CO adsorption to augment θ and surmounting the C-C coupling barrier, which have not been simultaneously realized within a singular catalyst yet. Here, we introduce a facilely synthesized lattice-strain-stabilized nitrogen-doped Cu (LSN-Cu) with abundant defect sites and robust nitrogen integration. The low-coordination sites enhance θ and concurrently, the compressive strain substantially fortifies nitrogen dopants on the catalyst surface, promoting C-C coupling activity. The n-propanol formation on the LSN-Cu electrode exhibits a 54% faradaic efficiency and a 29% half-cell energy efficiency. Moreover, within a membrane electrode assembly setup, a stable n-propanol electrosynthesis over 180 h at a total current density of 300 mA cm is obtained.

摘要

利用可再生电力通过电催化还原一氧化碳、水来合成多碳(C)燃料,是可持续储能和碳循环领域的一项重大进展。该领域的首要挑战是生产长链碳化合物(C,n≥3),其中提高一氧化碳覆盖率(θ)及其随后的多步偶联都至关重要。尽管如此,在增强一氧化碳吸附以提高θ和克服碳-碳偶联势垒之间存在一种“跷跷板”动态关系,在单一催化剂中尚未同时实现这两点。在此,我们介绍一种易于合成的具有丰富缺陷位点和牢固氮整合的晶格应变稳定化氮掺杂铜(LSN-Cu)。低配位位点提高了θ,同时,压缩应变显著增强了催化剂表面的氮掺杂剂,促进了碳-碳偶联活性。在LSN-Cu电极上形成正丙醇的法拉第效率为54%,半电池能量效率为29%。此外,在膜电极组件装置中,在300 mA cm的总电流密度下,可实现180小时以上的稳定正丙醇电合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c75/11329774/45235d16e01d/41467_2024_51478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验