Ohno Kinji, Rahman Mohammad Alinoor, Nazim Mohammad, Nasrin Farhana, Lin Yingni, Takeda Jun-Ichi, Masuda Akio
Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
J Neurochem. 2017 Aug;142 Suppl 2:64-72. doi: 10.1111/jnc.13954. Epub 2017 Mar 21.
We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChE , AChE , and AChE are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
我们人类是通过获得多种替代性RNA代谢方式而进化的,包括替代性剪接和转录非编码基因的方式,而不是通过获得新的编码基因。组织特异性和发育阶段特异性的替代性RNA剪接是通过对识别新生RNA转录本上同源剪接顺式元件的RNA结合蛋白的表达和激活进行严格调控的时空调节来实现的。在神经肌肉接头处表达的基因也会进行替代性剪接。此外,种系突变会通过损害RNA结合蛋白的结合而引发异常剪接,并导致先天性肌无力综合征(CMS)。我们阐述了人类中聚集蛋白(AGRN)、乙酰胆碱酯酶(ACHE)、肌肉特异性激酶(MuSK)、乙酰胆碱受体(AChR)α1亚基(CHRNA1)和胶原蛋白Q(COLQ)基因的生理性剪接机制,以及它们在疾病中的异常情况。hnRNP H/F会产生AChE的不同剪接异构体。MUSK外显子10的跳跃会产生一种对Wnt不敏感的MuSK异构体,这是人类特有的。外显子10的跳跃是通过hnRNP C、YB-1和hnRNP L对外显子10的协同结合来实现的。CHRNA1的外显子P3A会被选择性包含,从而在人类中产生无功能的AChRα1亚基。对CMS患者剪接突变的分子剖析表明,hnRNP H、多嘧啶序列结合蛋白1和hnRNP L会选择性跳过外显子P3A。同样,对一名CMS患者COLQ外显子16中的外显子突变进行分析发现,外显子16的组成型剪接需要富含丝氨酸精氨酸的剪接因子1的结合。CMS中的内含子和外显子剪接突变使我们能够剖析神经肌肉接头处表达基因的替代性和组成型剪接的分子机制。这是一篇发表于第十五届国际胆碱能机制研讨会特刊的文章。