CIC nanoGUNE , Tolosa Hiribidea 76, 20018 Donostia-San Sebastian, Spain.
Centro de Fı́sica de Materiales CSIC-UPV/EHU , 20018 Donostia-San Sebastian, Spain.
Nano Lett. 2017 Jan 11;17(1):50-56. doi: 10.1021/acs.nanolett.6b03148. Epub 2016 Dec 7.
Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron inclusion is achieved through the addition of a small amount of boron substituted precursors during the formation of pristine GNRs. In the pristine region between two boron pairs, the nanoribbons show a discretization of their valence band into confined modes compatible with a Fabry-Perot resonator. Transport simulations of the scattering properties of the boron pairs reveal that they selectively confine the first valence band of the pristine ribbon while allowing an efficient electron transmission of the second one. Such band-dependent electron scattering stems from the symmetry matching between the electronic wave functions of the states from the pristine nanoribbons and those localized at the boron pairs.
在金表面上,选择的分子前体的自下而上的化学反应可以产生高质量的石墨烯纳米带(GNRs)。在这里,我们报告了通过将硼原子对取代到 GNR 主链中,在扶手椅 GNR 中形成嵌入量子点的情况。硼的包含是通过在形成原始 GNR 期间添加少量硼取代的前体来实现的。在两个硼对之间的原始区域,纳米带将其价带离散化为与法布里-珀罗谐振器兼容的受限模式。对硼对散射特性的传输模拟表明,它们选择性地限制原始带状物的第一价带,同时允许第二价带的电子传输效率很高。这种依赖于能带的电子散射源于原始纳米带的状态的电子波函数与位于硼对处的那些局部化的状态之间的对称性匹配。