Li Jingcheng, Sanz Sofia, Merino-Díez Nestor, Vilas-Varela Manuel, Garcia-Lekue Aran, Corso Martina, de Oteyza Dimas G, Frederiksen Thomas, Peña Diego, Pascual Jose Ignacio
CIC nanoGUNE-BRTA, Donostia-San Sebastián, Spain.
Centro de Física de Materiales MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain.
Nat Commun. 2021 Sep 20;12(1):5538. doi: 10.1038/s41467-021-25688-z.
Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional π-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergo a topological phase transition. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunneling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. Our findings represent a new platform for producing topologically protected spin states and demonstrate the potential of connecting chiral edge and defect structure with band engineering.
对石墨烯纳米结构的尺寸和形状进行精确控制,可以设计出自旋极化边缘态和拓扑态,这是一种新型的非常规π磁性来源,在量子自旋电子学中有很有前景的应用。其出现的一个先决条件是存在稳健的带隙相,而这在扩展的石墨烯系统中很难找到。在这里,我们表明,窄至纳米宽度的半金属手性石墨烯纳米带(chGNRs)会经历拓扑相变。我们通过使用预先设计的分子前驱体进行表面合成,制备了具有不同手性和尺寸的原子级精确的chGNRs。结合扫描隧道显微镜(STM)测量和理论模拟,我们跟踪了chGNRs的拓扑性质和体能带隙随宽度、长度和手性的变化。我们的发现代表了一个产生拓扑保护自旋态的新平台,并展示了将手性边缘和缺陷结构与能带工程联系起来的潜力。