Leacy Finbarr P, Floyd Sian, Yates Tom A, White Ian R
Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
MRC Biostatistics Unit, Cambridge Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
Am J Epidemiol. 2017 Feb 15;185(4):304-315. doi: 10.1093/aje/kww107.
Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate missing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustment procedure and demonstrate how it can be used to assess sensitivity to departures from MAR, both when estimating the prevalence of a partially observed outcome and when performing parametric causal mediation analyses with a partially observed mediator. We illustrate the approach using data from 34,446 respondents to a tuberculosis and human immunodeficiency virus (HIV) prevalence survey that was conducted as part of the Zambia-South Africa TB and AIDS Reduction Study (2006-2010). In this study, information on partially observed HIV serological values was supplemented by additional information on self-reported HIV status. We present results from 2 types of sensitivity analysis: The first assumed that the degree of departure from MAR was the same for all individuals with missing HIV serological values; the second assumed that the degree of departure from MAR varied according to an individual's self-reported HIV status. Our analyses demonstrate that multiple imputation offers a principled approach by which to incorporate auxiliary information on self-reported HIV status into analyses based on partially observed HIV serological values.
采用增量调整的多重填补法提供了一种灵活且透明的方式,用于在一般非随机缺失机制下填补单变量缺失数据。这便于进行评估对随机缺失(MAR)假设敏感性的分析。我们回顾了增量调整程序,并展示了在估计部分观察到的结局患病率以及对部分观察到的中介变量进行参数因果中介分析时,如何使用该程序来评估对偏离MAR的敏感性。我们使用赞比亚 - 南非结核病和艾滋病减少研究(2006 - 2010年)的一部分——结核病和人类免疫缺陷病毒(HIV)患病率调查中34446名受访者的数据来说明该方法。在这项研究中,关于部分观察到的HIV血清学值的信息通过自我报告的HIV状态的额外信息得到补充。我们展示了两种敏感性分析的结果:第一种假设对于所有HIV血清学值缺失的个体,偏离MAR的程度相同;第二种假设偏离MAR的程度根据个体自我报告的HIV状态而变化。我们的分析表明,多重填补法提供了一种有原则的方法,可将自我报告的HIV状态的辅助信息纳入基于部分观察到的HIV血清学值的分析中。