Sugiyama Hiroyuki, Yoshida Ippei, Ueki Mayumi, Tanabe Katsuhiko, Manaka Akira, Hiramatsu Keiichi
Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
Department of Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
J Antibiot (Tokyo). 2017 Mar;70(3):264-271. doi: 10.1038/ja.2016.148. Epub 2017 Jan 11.
We characterized in vitro activities of α-methoxyimino acylides against macrolide-resistant clinical isolates of Streptococcus pneumoniae, Streptococcus pyogenes and Mycoplasma pneumoniae with ribosome modification or substitution and selected acylide-resistant mutants to clarify the binding point of the acylides. The acylides had low MICs against erm(B) gene-containing S. pneumoniae and S. pyogenes (MICs, 1-4 μg ml). For M. pneumoniae, although they had poor potencies against macrolide-resistant strains with the A2058G (Escherichia coli numbering) mutation in 23S rRNA (MICs, >32 μg ml), one of them showed in vitro activities against macrolide-resistant strains with the A2058U or A2059G mutations (MICs, 0.5-1 μg ml). These A2058U and A2059G mutant strains were used for the selection of acylide-resistant mutants. A genetic analysis showed that new point mutations in acylide-resistant mutants were found at G2576 in domain V of 23S rRNA and at Lys90 in L22 ribosomal protein. Furthermore, a molecular modeling study revealed that G2505/C2610, which enables stacking with G2576, might interact with a pyridyl moiety or an α-methoxyimino group at the 3-position of acylides. The α-methoxyimino acylides were shown to possess a tertiary binding point at G2505/C2610 in 23S rRNA. Our results suggest that α-methoxyimino acylides represent significant progress in macrolide antimicrobials.
我们表征了α-甲氧基氨基酰化物对具有核糖体修饰或替代的大环内酯耐药临床分离株肺炎链球菌、化脓性链球菌和肺炎支原体的体外活性,并选择了酰化物耐药突变体以阐明酰化物的结合位点。酰化物对含有erm(B)基因的肺炎链球菌和化脓性链球菌具有低MIC值(MIC值为1 - 4μg/ml)。对于肺炎支原体,尽管它们对23S rRNA中具有A2058G(大肠杆菌编号)突变的大环内酯耐药菌株效力较差(MIC值>32μg/ml),但其中一种对具有A2058U或A2059G突变的大环内酯耐药菌株显示出体外活性(MIC值为0.5 - 1μg/ml)。这些A2058U和A2059G突变菌株用于选择酰化物耐药突变体。遗传分析表明,在酰化物耐药突变体中发现23S rRNA结构域V中的G2576和核糖体蛋白L22中的Lys90出现新的点突变。此外,分子模拟研究表明,能够与G2576堆积的G2505/C2610可能与酰化物3位的吡啶基部分或α-甲氧基氨基基团相互作用。α-甲氧基氨基酰化物在23S rRNA中的G2505/C2610处显示出具有三级结合位点。我们的结果表明,α-甲氧基氨基酰化物在大环内酯类抗菌药物方面取得了重大进展。