Liu Shiwei, Liu Yihui, Zhao Jiawei, Cai Shitao, Qian Hongmei, Zuo Kaijing, Zhao Lingxia, Zhang Lida
Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Plant J. 2017 Apr;90(1):177-188. doi: 10.1111/tpj.13475. Epub 2017 Mar 4.
Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice.
水稻(Oryza sativa)是全球一半以上人口最重要的主食之一。许多水稻性状是数量性状、复杂性状,由多个相互作用的基因控制。因此,全面了解遗传关系对于系统鉴定控制农艺性状的基因至关重要。我们利用机器学习结合结构关系和功能信息,构建了一个全基因组水稻蛋白质-蛋白质相互作用网络(RicePPINet,http://netbio.sjtu.edu.cn/riceppinet)。RicePPINet包含16895个非转座元件相关蛋白质的708819个预测相互作用。通过与其他公开可用的蛋白质-蛋白质相互作用(PPI)预测方法比较,以及通过实验确定的PPI数据集,证明了该网络发现新蛋白质相互作用的能力。此外,对结构域介导的相互作用进行全局分析表明,RicePPINet在结构域水平上准确反映了蛋白质-蛋白质相互作用。我们的研究表明,基于RicePPINet的方法在对参与复杂农艺性状(如抗病性和耐旱性)的候选基因进行优先级排序方面的效率比随机预测高约2至11倍。RicePPINet为水稻重要农艺性状的遗传剖析提供了一个扩展的计算相互作用组图谱。