Suppr超能文献

病毒启发的自组装纳米纤维具有聚集诱导发射,可实现高效和可见的基因传递。

Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery.

机构信息

CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.

School of Chemical Engineering and Technology, Tianjin University , No. 92, Weijin Road, Nankai District, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4425-4432. doi: 10.1021/acsami.6b11536. Epub 2017 Jan 24.

Abstract

High-efficiency gene transfer and suitably low cytotoxicity are the main goals of gene transfection systems based on nonviral vectors. In addition, it is desirable to track the gene transfer process in order to observe and explain the mechanism. Herein, inspired by viral structures that are optimized for gene delivery, we designed a small-molecule gene vector (TR4) with aggregation-induced emission properties by capping a peptide containing four arginine residues with tetraphenylethene (TPE) and a lipophilic tail. This novel vector can self-assemble with plasmid DNA to form nanofibers in solution with low cytotoxicity, high stability, and high transfection efficiency. pDNA@TR4 complexes were able to transfect a variety of different cell lines, including stem cells. The self-assembly process induces bright fluorescence from TPE, which makes the nanofibers visible by confocal laser scanning microscopy (CLSM). This allows us for the tracking of the gene delivery process.

摘要

高效的基因转染和适当的低细胞毒性是非病毒载体基因转染系统的主要目标。此外,为了观察和解释机制,还期望跟踪基因转染过程。受病毒结构优化基因传递的启发,我们设计了一种小分子基因载体(TR4),它具有聚集诱导发射特性,由含有四个精氨酸残基的肽与四苯乙烯(TPE)和一个亲脂性尾巴封端。这种新型载体可以与质粒 DNA 自组装形成溶液中的纳米纤维,具有低细胞毒性、高稳定性和高转染效率。pDNA@TR4 复合物能够转染多种不同的细胞系,包括干细胞。自组装过程诱导 TPE 发出明亮的荧光,这使得通过共聚焦激光扫描显微镜(CLSM)可以观察到纳米纤维。这使我们能够跟踪基因传递过程。

相似文献

1
Virus-Inspired Self-Assembled Nanofibers with Aggregation-Induced Emission for Highly Efficient and Visible Gene Delivery.
ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4425-4432. doi: 10.1021/acsami.6b11536. Epub 2017 Jan 24.
4
Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device.
Mol Pharm. 2009 Sep-Oct;6(5):1333-42. doi: 10.1021/mp900016q.
5
Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16006-16014. doi: 10.1021/acsami.7b03402. Epub 2017 May 3.
6
[12]aneN3 Modified Tetraphenylethene Molecules as High-Performance Sensing, Condensing, and Delivering Agents toward DNAs.
ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14367-78. doi: 10.1021/acsami.6b01949. Epub 2016 Jun 1.
7
Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors.
Biomaterials. 2007 Jul;28(21):3245-54. doi: 10.1016/j.biomaterials.2007.03.033. Epub 2007 Apr 12.
8
FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG.
Biomaterials. 2013 Sep;34(27):6482-94. doi: 10.1016/j.biomaterials.2013.03.071. Epub 2013 Apr 17.

引用本文的文献

1
Biomimetic peptide self-assembly for functional materials.
Nat Rev Chem. 2020 Sep 15;4(11):615-634. doi: 10.1038/s41570-020-0215-y.
2
Peptide Amphiphiles as Biodegradable Adjuvants for Efficient Retroviral Gene Delivery.
Adv Healthc Mater. 2024 Feb;13(4):e2301364. doi: 10.1002/adhm.202301364. Epub 2023 Nov 23.
3
Peptide-drug co-assembling: A potent armament against cancer.
Theranostics. 2023 Sep 25;13(15):5322-5347. doi: 10.7150/thno.87356. eCollection 2023.
4
Aggregation-Induced Emission (AIE), Life and Health.
ACS Nano. 2023 Aug 8;17(15):14347-14405. doi: 10.1021/acsnano.3c03925. Epub 2023 Jul 24.
7
Nanofiber Carriers of Therapeutic Load: Current Trends.
Int J Mol Sci. 2022 Aug 2;23(15):8581. doi: 10.3390/ijms23158581.
8
Mild polyaddition and polyalkylation based on the carbon-carbon bond formation reaction of active methylene.
RSC Adv. 2019 Dec 6;9(69):40455-40461. doi: 10.1039/c9ra08155k. eCollection 2019 Dec 3.
9
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives.
Top Curr Chem (Cham). 2021 Feb 5;379(2):9. doi: 10.1007/s41061-020-00322-6.
10
Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16006-16014. doi: 10.1021/acsami.7b03402. Epub 2017 May 3.

本文引用的文献

1
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.
Chem Soc Rev. 2016 Mar 7;45(5):1457-501. doi: 10.1039/c5cs00798d.
3
Utilising inorganic nanocarriers for gene delivery.
Biomater Sci. 2016 Jan;4(1):70-86. doi: 10.1039/c5bm00277j.
4
A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA.
Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11133-7. doi: 10.1002/anie.201504884. Epub 2015 Aug 5.
5
Specific light-up bioprobes based on AIEgen conjugates.
Chem Soc Rev. 2015 May 21;44(10):2798-811. doi: 10.1039/c4cs00444b. Epub 2015 Feb 17.
6
A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery.
Angew Chem Int Ed Engl. 2015 Mar 2;54(10):2941-4. doi: 10.1002/anie.201410429. Epub 2015 Jan 22.
7
Structural mimics of viruses through peptide/DNA co-assembly.
J Am Chem Soc. 2014 Dec 31;136(52):17902-5. doi: 10.1021/ja507833x. Epub 2014 Nov 19.
8
Biosensing by luminogens with aggregation-induced emission characteristics.
Chem Soc Rev. 2015 Jul 7;44(13):4228-38. doi: 10.1039/c4cs00325j. Epub 2014 Nov 6.
9
Intracellular microenvironment-responsive label-free autofluorescent nanogels for traceable gene delivery.
Adv Healthc Mater. 2014 Nov;3(11):1839-48. doi: 10.1002/adhm.201400187. Epub 2014 Jun 26.
10
Cell membrane tracker based on restriction of intramolecular rotation.
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):8971-5. doi: 10.1021/am5025897. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验