State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University , Tianjin 300072, People's Republic of China.
Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada.
J Am Chem Soc. 2017 Feb 1;139(4):1538-1544. doi: 10.1021/jacs.6b11371. Epub 2017 Jan 24.
Plant type [2Fe-2S] ferredoxins function primarily as electron transfer proteins in photosynthesis. Studying the unfolding-folding of ferredoxins in vitro is challenging, because the unfolding of ferredoxin is often irreversible due to the loss or disintegration of the iron-sulfur cluster. Additionally, the in vivo folding of holo-ferredoxin requires ferredoxin biogenesis proteins. Here, we employed atomic force microscopy-based single-molecule force microscopy and protein engineering techniques to directly study the mechanical unfolding and refolding of a plant type [2Fe-2S] ferredoxin from cyanobacteria Anabaena. Our results indicate that upon stretching, ferredoxin unfolds in a three-state mechanism. The first step is the unfolding of the protein sequence that is outside and not sequestered by the [2Fe-2S] center, and the second one relates to the force-induced rupture of the [2Fe-2S] metal center and subsequent unraveling of the protein structure shielded by the [2Fe-2S] center. During repeated stretching and relaxation of a single polyprotein, we observed that the completely unfolded ferredoxin can refold to its native holo-form with a fully reconstituted [2Fe-2S] center. These results demonstrate that the unfolding-refolding of individual ferredoxin is reversible at the single-molecule level, enabling new avenues of studying both folding-unfolding mechanisms, as well as the reactivity of the metal center of metalloproteins in vitro.
植物型[2Fe-2S]铁氧还蛋白主要作为光合作用中的电子转移蛋白。研究铁氧还蛋白在体外的展开-折叠是具有挑战性的,因为由于铁-硫簇的丢失或解体,铁氧还蛋白的展开通常是不可逆的。此外,[2Fe-2S]全铁氧还蛋白的体内折叠需要铁氧还蛋白生物发生蛋白。在这里,我们采用原子力显微镜基于单分子力显微镜和蛋白质工程技术直接研究来自蓝藻鱼腥藻的植物型[2Fe-2S]铁氧还蛋白的机械展开和重折叠。我们的结果表明,在拉伸时,铁氧还蛋白以三态机制展开。第一步是展开位于[2Fe-2S]中心之外且未被[2Fe-2S]中心隔离的蛋白质序列,第二步与力诱导的[2Fe-2S]金属中心断裂以及随后展开由[2Fe-2S]中心屏蔽的蛋白质结构有关。在单个多蛋白的反复拉伸和松弛过程中,我们观察到完全展开的铁氧还蛋白可以重新折叠成其天然的全同型,并且[2Fe-2S]中心完全重建。这些结果表明,单个铁氧还蛋白的展开-重折叠在单分子水平上是可逆的,为研究折叠-展开机制以及体外金属中心的反应性开辟了新的途径。