Suppr超能文献

单细胞中神经蛋白的无扩增定量分析。

Quantification of a Neurological Protein in a Single Cell Without Amplification.

作者信息

Lee Donggyu, Woo Youngsik, Lim Ji-Seon, Park Ikbum, Park Sang Ki, Park Joon Won

机构信息

Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.

Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.

出版信息

ACS Omega. 2022 Jun 2;7(23):20165-20171. doi: 10.1021/acsomega.2c02009. eCollection 2022 Jun 14.

Abstract

Proteins are key biomolecules that not only play various roles in the living body but also are used as biomarkers. If these proteins can be quantified at the level of a single cell, understanding the role of proteins will be deepened and diagnosing diseases and abnormality will be further upgraded. In this study, we quantified a neurological protein in a single cell using atomic force microscopy (AFM). After capturing specifically disrupted-in-schizophrenia 1 (DISC1) in a single cell onto a microspot immobilizing the corresponding antibody on the surface, force mapping with AFM was followed to visualize individual DISC1. Although a large variation of the number of DISC1 in a cell was observed, the average number is 4.38 × 10, and the number agrees with the ensemble-averaged value. The current AFM approach for the quantitative analysis of proteins in a single cell should be useful to study molecular behavior of proteins in depth and to follow physiological change of individual cells in response to external stimuli.

摘要

蛋白质是关键的生物分子,不仅在生物体内发挥各种作用,还被用作生物标志物。如果能够在单细胞水平上对这些蛋白质进行定量分析,那么对蛋白质作用的理解将会加深,疾病和异常的诊断也将得到进一步提升。在本研究中,我们使用原子力显微镜(AFM)在单细胞水平上对一种神经蛋白进行了定量分析。在将单细胞中特异性破坏精神分裂症1(DISC1)捕获到表面固定有相应抗体的微斑点上之后,接着用AFM进行力映射以可视化单个DISC1。尽管观察到细胞中DISC1数量存在很大差异,但平均数量为4.38×10,且该数量与总体平均值一致。当前用于单细胞中蛋白质定量分析的AFM方法,对于深入研究蛋白质的分子行为以及跟踪单个细胞对外部刺激的生理变化应该是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/566b/9201896/aaa13b173503/ao2c02009_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验