Suppr超能文献

氮掺杂介孔碳用作量子点敏化太阳能电池的对电极,转换效率超过12% 。

Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12.

作者信息

Jiao Shuang, Du Jun, Du Zhonglin, Long Donghui, Jiang Wuyou, Pan Zhenxiao, Li Yan, Zhong Xinhua

机构信息

Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China.

School of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China.

出版信息

J Phys Chem Lett. 2017 Feb 2;8(3):559-564. doi: 10.1021/acs.jpclett.6b02864. Epub 2017 Jan 13.

Abstract

The exploration of catalyst materials for counter electrodes (CEs) in quantum dot sensitized solar cells (QDSCs) that have both high electrocatalytic activity and low charge transfer resistance is always significant yet challenging. In this work, we report the incorporation of nitrogen heteroatoms into carbon lattices leading to nitrogen-doped mesoporous carbon (N-MC) materials with superior catalytic activity when used as CEs in Zn-Cu-In-Se QDSCs. A series of N-MC materials with different nitrogen contents were synthesized by a colloidal silica nanocasting method. Electrochemical measurements revealed that the N-MC with a nitrogen content of 8.58 wt % exhibited the strongest activity in catalyzing the reduction of a polysulfide redox couple (S/S), and therefore, the corresponding QDSC device showed the best photovoltaic performance with an average power conversion efficiency (PCE) of 12.23% and a certified PCE of 12.07% under one full sun illumination, which is a new PCE record for quantum dot based solar cells.

摘要

探索用于量子点敏化太阳能电池(QDSC)对电极(CE)的催化剂材料,使其兼具高电催化活性和低电荷转移电阻,一直是意义重大却颇具挑战的工作。在本研究中,我们报道了将氮杂原子引入碳晶格,从而得到氮掺杂介孔碳(N-MC)材料,该材料在用作Zn-Cu-In-Se QDSC的对电极时具有优异的催化活性。通过胶体二氧化硅纳米铸造法合成了一系列具有不同氮含量的N-MC材料。电化学测量表明,氮含量为8.58 wt%的N-MC在催化多硫化物氧化还原对(S/S)的还原反应中表现出最强的活性,因此,相应的QDSC器件在全光照下展现出最佳的光伏性能,平均功率转换效率(PCE)为12.23%,认证PCE为12.07%,这是基于量子点的太阳能电池的新PCE记录。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验