Suppr超能文献

用于高效量子点敏化太阳能电池的MOF衍生的钴、氮共掺杂碳/钛网对电极

MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells.

作者信息

Lin Yu, Song Han, Rao Huashang, Du Zhonglin, Pan Zhenxiao, Zhong Xinhua

机构信息

College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China.

College of Materials Science and Engineering, the National Base of International Science and Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China.

出版信息

J Phys Chem Lett. 2019 Sep 5;10(17):4974-4979. doi: 10.1021/acs.jpclett.9b02082. Epub 2019 Aug 15.

Abstract

Carbon supported on titanium mesh electrodes has been recognized as the best performing counter electrodes (CEs) in quantum dot sensitized solar cells (QDSCs). Herein, layered double hydroxides (LDHs) are applied as a scaffold template for the growth of cobalt-zeolite-imidazole framework (ZIF-67) crystals, and micrometer-sized Co,N codoped porous carbon materials (Co,N-C) are obtained through a carbonization process. The as-prepared Co,N-C exhibits favorable features for electrocatalytic reduction of polysulfide, including a high surface area of 491.36 m/g, highly effective active sites, and a hierarchical micro/mesoporous structure. Due to the large particle size, the obtained Co,N-C can couple with a Ti mesh substrate for the fabrication of high-performance Co,N-C/Ti CEs for QDSCs. As a result, the corresponding QDSCs exhibit an average efficiency of 13.55% ( = 25.93 mA/cm, = 0.778 V, FF = 0.672), which is a 10.5% enhancement compared to the previous best result from the N-doped mesoporous carbon counterpart.

摘要

负载在钛网电极上的碳已被公认为量子点敏化太阳能电池(QDSC)中性能最佳的对电极(CE)。在此,层状双氢氧化物(LDH)被用作钴-沸石-咪唑框架(ZIF-67)晶体生长的支架模板,并通过碳化过程获得了微米级的Co,N共掺杂多孔碳材料(Co,N-C)。所制备的Co,N-C对多硫化物的电催化还原表现出良好的特性,包括491.36 m²/g的高比表面积、高效的活性位点和分级的微/介孔结构。由于粒径较大,所获得的Co,N-C可以与钛网基板耦合,用于制造用于QDSC的高性能Co,N-C/Ti CE。结果,相应的QDSC表现出13.55%的平均效率(J = 25.93 mA/cm²,V = 0.778 V,FF = 0.672),与之前N掺杂介孔碳对应物的最佳结果相比提高了10.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验