Suppr超能文献

基于金属有机骨架的 CuS 双面修饰碳纳米片作为高性能、稳定的量子点太阳能电池对电极。

MOF-derived CuS double-faced-decorated carbon nanosheets as high-performance and stable counter electrodes for quantum dots solar cells.

机构信息

Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt A):22-30. doi: 10.1016/j.jcis.2022.07.128. Epub 2022 Jul 25.

Abstract

The development of highly-catalytic counter electrode (CE) materials is vital to the construction of quantum dot-sensitized solar cells (QDSCs) but is still challenging. Here, a novel self-assembly double-faced decorated carbon nanosheets with MOF-derived CuS nanospheres (DF-CuS/C NSs) were prepared as high-performance hybrid CEs for improving the catalytic activity towards polysulfide electrolytes and enhancing the performance of QDSCs. It is shown that the MOF-derived CuS nanospheres disperse well on the surface of the carbon NSs in the obtained DF-CuS/C NSs hybrids. Electrochemical characterization demonstrated that the DF-CuS/C NSs with moderate mass ratio exhibited enhanced electrocatalytic activity towards the reduction of the polysulfide redox couple (S/S) and decreased charge transfer resistance at the interface of the CE/electrolyte. Benefitting from the merits of this novel hybrid CE, the power conversion efficiency (PCE) of the CdSeTe QDs-based QDSCs is increased to 9.39%, which is higher than the pristine carrageenan (CA)-derived CEs (5.84%) and Cu-BTC-derived CEs (7.74%). With the further optimization of the substrate, the highest PCE of 11.36% was achieved based on the Ti mesh substrate supported hybrid CE.

摘要

开发高催化对电极(CE)材料对于构建量子点敏化太阳能电池(QDSCs)至关重要,但仍然具有挑战性。在这里,我们制备了一种新型的自组装双面修饰碳纳米片负载 MOF 衍生 CuS 纳米球(DF-CuS/C NSs),作为高性能的混合 CE,以提高对多硫化物电解质的催化活性并增强 QDSCs 的性能。结果表明,在所得的 DF-CuS/C NSs 杂化物中,MOF 衍生的 CuS 纳米球很好地分散在碳 NSs 的表面上。电化学表征表明,具有适中质量比的 DF-CuS/C NSs 对多硫化物氧化还原对(S/S)的还原表现出增强的电催化活性,并且在 CE/电解质界面处降低了电荷转移电阻。得益于这种新型混合 CE 的优点,基于 CdSeTe QDs 的 QDSCs 的功率转换效率(PCE)提高到 9.39%,高于原始卡拉胶(CA)衍生的 CE(5.84%)和 Cu-BTC 衍生的 CE(7.74%)。通过进一步优化基底,在 Ti 网基底支撑的混合 CE 上实现了最高 11.36%的 PCE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验