Díez Francisco J, Yebra Mar, Bermejo Iñigo, Palacios-Alonso Miguel A, Calleja Manuel Arias, Luque Manuel, Pérez-Martín Jorge
Department Artificial Intelligence, UNED, Madrid, Spain (FJD, MA, ML, JP).
Centre for Biomedical Technology, Technical University of Madrid, Spain (MY).
Med Decis Making. 2017 Feb;37(2):183-195. doi: 10.1177/0272989X16685088.
Markov influence diagrams (MIDs) are a new type of probabilistic graphical model that extends influence diagrams in the same way that Markov decision trees extend decision trees. They have been designed to build state-transition models, mainly in medicine, and perform cost-effectiveness analyses. Using a causal graph that may contain several variables per cycle, MIDs can model various patient characteristics without multiplying the number of states; in particular, they can represent the history of the patient without using tunnel states. OpenMarkov, an open-source tool, allows the decision analyst to build and evaluate MIDs-including cost-effectiveness analysis and several types of deterministic and probabilistic sensitivity analysis-with a graphical user interface, without writing any code. This way, MIDs can be used to easily build and evaluate complex models whose implementation as spreadsheets or decision trees would be cumbersome or unfeasible in practice. Furthermore, many problems that previously required discrete event simulation can be solved with MIDs; i.e., within the paradigm of state-transition models, in which many health economists feel more comfortable.
马尔可夫影响图(MIDs)是一种新型概率图形模型,它以马尔可夫决策树扩展决策树的方式扩展影响图。它们被设计用于构建状态转换模型,主要应用于医学领域,并进行成本效益分析。通过使用每个周期可能包含多个变量的因果图,MIDs可以对各种患者特征进行建模,而无需增加状态数量;特别是,它们可以在不使用隧道状态的情况下表示患者的病史。开源工具OpenMarkov允许决策分析师通过图形用户界面构建和评估MIDs,包括成本效益分析以及几种类型的确定性和概率敏感性分析,而无需编写任何代码。通过这种方式,MIDs可用于轻松构建和评估复杂模型,而将这些模型作为电子表格或决策树来实现,在实践中会很繁琐或不可行。此外,许多以前需要离散事件模拟的问题都可以用MIDs解决;也就是说,在状态转换模型的范式内,许多卫生经济学家对此更得心应手。