Suppr超能文献

用影响图表示和分析医疗决策问题。

Representation and analysis of medical decision problems with influence diagrams.

作者信息

Owens D K, Shachter R D, Nease R F

机构信息

VA Palo Alto Health Care System, Section of General Medicine, CA 94304, USA.

出版信息

Med Decis Making. 1997 Jul-Sep;17(3):241-62. doi: 10.1177/0272989X9701700301.

Abstract

Influence diagrams are a powerful graphic representation for decision models, complementary to decision trees. Influence diagrams and decision trees are different graphic representations for the same underlying mathematical model and operations. This article describes the elements of an influence diagram, and shows several familiar decision problems represented as decision trees and as influence diagrams. The authors also contrast the information highlighted in each graphic representation, demonstrate how to calculate the expected utilities of decision alternatives modeled with an influence diagram, provide an overview of the conceptual basis of the solution algorithms that have been developed for influence diagrams, discuss the strengths and limitations of influence diagrams relative to decision trees, and describe the mathematical operations that are used to evaluate both decision trees and influence diagrams. They use clinical examples to illustrate the mathematical operations of the influence-diagram-evaluation algorithm; these operations are arc reversal, chance node removal by averaging, and decision node removal by policy determination. Influence diagrams may be helpful when problems have a high degree of conditional independence, when large models are needed, when communication of the probabilistic relationships is important, or when the analysis requires extensive Bayesian updating. The choice of graphic representation should be governed by convenience, and will depend on the problem being analyzed, on the experience of the analyst, and on the background of the consumers of the analysis.

摘要

影响图是决策模型的一种强大图形表示形式,与决策树相辅相成。影响图和决策树是同一基础数学模型及运算的不同图形表示形式。本文描述了影响图的要素,并展示了几个用决策树和影响图表示的常见决策问题。作者还对比了每种图形表示形式所突出显示的信息,演示了如何计算用影响图建模的决策备选方案的期望效用,概述了为影响图开发的求解算法的概念基础,讨论了影响图相对于决策树的优缺点,并描述了用于评估决策树和影响图的数学运算。他们使用临床实例来说明影响图评估算法的数学运算;这些运算包括弧反转、通过求平均去除机会节点以及通过策略确定去除决策节点。当问题具有高度条件独立性、需要大型模型、概率关系的传达很重要或者分析需要广泛的贝叶斯更新时,影响图可能会有所帮助。图形表示形式的选择应基于便利性,并且将取决于所分析的问题、分析师的经验以及分析结果使用者的背景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验