Aponte-Santamaría Camilo, Lippok Svenja, Mittag Judith J, Obser Tobias, Schneppenheim Reinhard, Baldauf Carsten, Gräter Frauke, Budde Ulrich, Rädler Joachim O
Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
Biophys J. 2017 Jan 10;112(1):57-65. doi: 10.1016/j.bpj.2016.11.3202.
The large multimeric glycoprotein von Willebrand Factor (VWF) plays a pivotal adhesive role during primary hemostasis. VWF is cleaved by the protease ADAMTS13 as a down-regulatory mechanism to prevent excessive VWF-mediated platelet aggregation. For each VWF monomer, the ADAMTS13 cleavage site is located deeply buried inside the VWF A2 domain. External forces in vivo or denaturants in vitro trigger the unfolding of this domain, thereby leaving the cleavage site solvent-exposed and ready for cleavage. Mutations in the VWF A2 domain, facilitating the cleavage process, cause a distinct form of von Willebrand disease (VWD), VWD type 2A. In particular, the VWD type 2A Gly1629Glu mutation drastically accelerates the proteolytic cleavage activity, even in the absence of forces or denaturants. However, the effect of this mutation has not yet been quantified, in terms of kinetics or thermodynamics, nor has the underlying molecular mechanism been revealed. In this study, we addressed these questions by using fluorescence correlation spectroscopy, molecular dynamics simulations, and free energy calculations. The measured enzyme kinetics revealed a 20-fold increase in the cleavage rate for the Gly1629Glu mutant compared with the wild-type VWF. Cleavage was found cooperative with a cooperativity coefficient n = 2.3, suggesting that the mutant VWF gives access to multiple cleavage sites of the VWF multimer at the same time. According to our simulations and free energy calculations, the Gly1629Glu mutation causes structural perturbation in the A2 domain and thereby destabilizes the domain by ∼10 kJ/mol, promoting its unfolding. Taken together, the enhanced proteolytic activity of Gly1629Glu can be readily explained by an increased availability of the ADAMTS13 cleavage site through A2-domain-fold thermodynamic destabilization. Our study puts forward the Gly1629Glu mutant as a very efficient enzyme substrate for ADAMTS13 activity assays.
大型多聚体糖蛋白血管性血友病因子(VWF)在初级止血过程中起关键的黏附作用。VWF被蛋白酶ADAMTS13切割,作为一种下调机制以防止VWF介导的血小板过度聚集。对于每个VWF单体,ADAMTS13切割位点深埋在VWF A2结构域内部。体内的外力或体外的变性剂会引发该结构域的去折叠,从而使切割位点暴露于溶剂中并准备好被切割。VWF A2结构域中的突变促进了切割过程,导致一种独特形式的血管性血友病(VWD),即2A型VWD。特别是,2A型VWD的Gly1629Glu突变极大地加速了蛋白水解切割活性,即使在没有外力或变性剂的情况下也是如此。然而,就动力学或热力学而言,该突变的影响尚未量化,其潜在的分子机制也未被揭示。在本研究中,我们通过使用荧光相关光谱、分子动力学模拟和自由能计算来解决这些问题。测得的酶动力学结果显示,与野生型VWF相比,Gly1629Glu突变体的切割速率增加了20倍。发现切割具有协同性,协同系数n = 2.3,这表明突变型VWF可同时进入VWF多聚体的多个切割位点。根据我们的模拟和自由能计算,Gly1629Glu突变导致A2结构域的结构扰动,从而使该结构域不稳定约10 kJ/mol,促进其去折叠。综上所述,Gly1629Glu增强的蛋白水解活性可以很容易地通过A2结构域折叠的热力学不稳定导致ADAMTS13切割位点可用性增加来解释。我们的研究提出Gly1629Glu突变体作为用于ADAMTS13活性测定的非常有效的酶底物。