Äijö Tarmo, Bonneau Richard
Center for Computational Biology, Simons Foundation, New York, N.Y., USA.
Hum Hered. 2016;81(2):62-77. doi: 10.1159/000446614. Epub 2017 Jan 12.
Thanks to the confluence of genomic technology and computational developments, the possibility of network inference methods that automatically learn large comprehensive models of cellular regulation is closer than ever. This perspective focuses on enumerating the elements of computational strategies that, when coupled to appropriate experimental designs, can lead to accurate large-scale models of chromatin state and transcriptional regulatory structure and dynamics. We highlight 4 research questions that require further investigation in order to make progress in network inference: (1) using overall constraints on network structure such as sparsity, (2) use of informative priors and data integration to constrain individual model parameters, (3) estimation of latent regulatory factor activity under varying cell conditions, and (4) new methods for learning and modeling regulatory factor interactions. We conclude that methods combining advances in these 4 categories of required effort with new genomic technologies will result in biophysically motivated dynamic genome-wide regulatory network models for several of the best-studied organisms and cell types.
得益于基因组技术与计算技术的融合,自动学习细胞调控大型综合模型的网络推理方法比以往任何时候都更接近现实。本文着重阐述计算策略的要素,这些要素与适当的实验设计相结合,能够生成准确的染色质状态及转录调控结构与动力学的大规模模型。我们强调了4个需要进一步研究以推动网络推理取得进展的问题:(1)利用网络结构的整体约束条件,如稀疏性;(2)使用信息先验和数据整合来约束单个模型参数;(3)估计不同细胞条件下潜在调控因子的活性;(4)学习和建模调控因子相互作用的新方法。我们得出结论,将这4类所需工作的进展与新的基因组技术相结合的方法,将为几种研究充分的生物体和细胞类型生成具有生物物理动机的动态全基因组调控网络模型。