Suppr超能文献

使用遗传节点排序从系统遗传学数据进行高维贝叶斯网络推理

High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering.

作者信息

Wang Lingfei, Audenaert Pieter, Michoel Tom

机构信息

Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom.

Broad Institute of Harvard and MIT, Cambridge, MA, United States.

出版信息

Front Genet. 2019 Dec 20;10:1196. doi: 10.3389/fgene.2019.01196. eCollection 2019.

Abstract

Studying the impact of genetic variation on gene regulatory networks is essential to understand the biological mechanisms by which genetic variation causes variation in phenotypes. Bayesian networks provide an elegant statistical approach for multi-trait genetic mapping and modelling causal trait relationships. However, inferring Bayesian gene networks from high-dimensional genetics and genomics data is challenging, because the number of possible networks scales super-exponentially with the number of nodes, and the computational cost of conventional Bayesian network inference methods quickly becomes prohibitive. We propose an alternative method to infer high-quality Bayesian gene networks that easily scales to thousands of genes. Our method first reconstructs a node ordering by conducting pairwise causal inference tests between genes, which then allows to infer a Bayesian network a series of independent variable selection problems, one for each gene. We demonstrate using simulated and real systems genetics data that this results in a Bayesian network with equal, and sometimes better, likelihood than the conventional methods, while having a significantly higher overlap with groundtruth networks and being orders of magnitude faster. Moreover our method allows for a unified false discovery rate control across genes and individual edges, and thus a rigorous and easily interpretable way for tuning the sparsity level of the inferred network. Bayesian network inference using pairwise node ordering is a highly efficient approach for reconstructing gene regulatory networks when prior information for the inclusion of edges exists or can be inferred from the available data.

摘要

研究基因变异对基因调控网络的影响对于理解基因变异导致表型变异的生物学机制至关重要。贝叶斯网络为多性状遗传定位和因果性状关系建模提供了一种优雅的统计方法。然而,从高维遗传学和基因组学数据推断贝叶斯基因网络具有挑战性,因为可能网络的数量随节点数量呈超指数增长,并且传统贝叶斯网络推断方法的计算成本很快变得过高。我们提出了一种替代方法来推断高质量的贝叶斯基因网络,该方法可以轻松扩展到数千个基因。我们的方法首先通过在基因之间进行成对因果推断测试来重建节点顺序,然后允许针对一系列独立变量选择问题推断贝叶斯网络,每个基因一个问题。我们使用模拟和真实系统遗传学数据证明,这会得到一个贝叶斯网络,其似然性与传统方法相当,有时甚至更好,同时与真实网络有显著更高的重叠度,并且速度快几个数量级。此外,我们的方法允许对基因和单个边进行统一的错误发现率控制,从而为调整推断网络的稀疏度水平提供一种严格且易于解释的方法。当存在边包含的先验信息或可以从可用数据中推断出先验信息时,使用成对节点排序的贝叶斯网络推断是重建基因调控网络的一种高效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9303/6933017/622e3ee0521e/fgene-10-01196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验