Liu Zhi-Ping, Liu Shutang, Chen Ruitang, Huang Xiaopeng, Wu Ling-Yun
Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China.
Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.
BMC Bioinformatics. 2017 Jan 11;18(1):27. doi: 10.1186/s12859-016-1410-1.
Many critical biological processes are strongly related to protein-RNA interactions. Revealing the protein structure motifs for RNA-binding will provide valuable information for deciphering protein-RNA recognition mechanisms and benefit complementary structural design in bioengineering. RNA-binding events often take place at pockets on protein surfaces. The structural classification of local binding pockets determines the major patterns of RNA recognition.
In this work, we provide a novel framework for systematically identifying the structure motifs of protein-RNA binding sites in the form of pockets on regional protein surfaces via a structure alignment-based method. We first construct a similarity network of RNA-binding pockets based on a non-sequential-order structure alignment method for local structure alignment. By using network community decomposition, the RNA-binding pockets on protein surfaces are clustered into groups with structural similarity. With a multiple structure alignment strategy, the consensus RNA-binding pockets in each group are identified. The crucial recognition patterns, as well as the protein-RNA binding motifs, are then identified and analyzed.
Large-scale RNA-binding pockets on protein surfaces are grouped by measuring their structural similarities. This similarity network-based framework provides a convenient method for modeling the structural relationships of functional pockets. The local structural patterns identified serve as structure motifs for the recognition with RNA on protein surfaces.
许多关键的生物学过程与蛋白质 - RNA相互作用密切相关。揭示RNA结合的蛋白质结构基序将为破译蛋白质 - RNA识别机制提供有价值的信息,并有利于生物工程中的互补结构设计。RNA结合事件通常发生在蛋白质表面的口袋区域。局部结合口袋的结构分类决定了RNA识别的主要模式。
在这项工作中,我们提供了一个新颖的框架,通过基于结构比对的方法,系统地识别区域蛋白质表面口袋形式的蛋白质 - RNA结合位点的结构基序。我们首先基于用于局部结构比对的非顺序结构比对方法构建RNA结合口袋的相似性网络。通过使用网络社区分解,将蛋白质表面的RNA结合口袋聚类为具有结构相似性的组。采用多重结构比对策略,识别每组中的共有RNA结合口袋。然后识别并分析关键的识别模式以及蛋白质 - RNA结合基序。
通过测量蛋白质表面大规模RNA结合口袋的结构相似性对其进行分组。这种基于相似性网络的框架为模拟功能口袋的结构关系提供了一种便捷的方法。所识别的局部结构模式作为蛋白质表面与RNA识别的结构基序。