Suppr超能文献

封面文章:胚胎期暴露于2,3,7,8-四氯二苯并对二噁英对日本青鳉(Oryzias latipes)中轴骨骼成骨的影响

From the Cover: Embryonic Exposure to TCDD Impacts Osteogenesis of the Axial Skeleton in Japanese medaka, Oryzias latipes.

作者信息

Watson AtLee T D, Planchart Antonio, Mattingly Carolyn J, Winkler Christoph, Reif David M, Kullman Seth W

机构信息

Department of Biological Sciences.

Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695.

出版信息

Toxicol Sci. 2017 Feb;155(2):485-496. doi: 10.1093/toxsci/kfw229. Epub 2016 Nov 15.

Abstract

Recent studies from mammalian, fish, and in vitro models have identified bone and cartilage development as sensitive targets for dioxins and other aryl hydrocarbon receptor ligands. In this study, we assess how embryonic 2,3,7,8-tetrachlorochlorodibenzo-p-dioxin (TCDD) exposure impacts axial osteogenesis in Japanese medaka (Oryzias latipes), a vertebrate model of human bone development. Embryos from inbred wild-type Orange-red Hd-dR and 3 transgenic medaka lines (twist:EGFP, osx/sp7:mCherry, col10a1:nlGFP) were exposed to 0.15 nM and 0.3 nM TCDD and reared until 20 dpf. Individuals were stained for mineralized bone and imaged using confocal microscopy to assess skeletal alterations in medial vertebrae in combination with a qualitative spatial analysis of osteoblast and osteoblast progenitor cell populations. Exposure to TCDD resulted in an overall attenuation of vertebral ossification characterized by truncated centra, and reduced neural and hemal arch lengths. Effects on mineralization were consistent with modifications in cell number and cell localization of transgene-labeled osteoblast and osteoblast progenitor cells. Endogenous expression of osteogenic regulators runt-related transcription factor 2 (runx2) and osterix (osx/sp7), and extracellular matrix genes osteopontin (spp1), collagen type I alpha I (col1), collagen type X alpha I (col10a1), and osteocalcin (bglap/osc) was significantly diminished at 20 dpf following TCDD exposure as compared with controls. Through global transcriptomic analysis more than 590 differentially expressed genes were identified and mapped to select pathological states including inflammatory disease, connective tissue disorders, and skeletal and muscular disorders. Taken together, results from this study suggest that TCDD exposure inhibits axial bone formation through dysregulation of osteoblast differentiation. This approach highlights the advantages and sensitivity of using small fish models to investigate how xenobiotic exposure may impact skeletal development.

摘要

来自哺乳动物、鱼类和体外模型的最新研究已将骨骼和软骨发育确定为二噁英及其他芳烃受体配体的敏感靶点。在本研究中,我们评估胚胎期暴露于2,3,7,8-四氯二苯并对二噁英(TCDD)如何影响日本青鳉(Oryzias latipes)的轴向骨生成,日本青鳉是人类骨骼发育的脊椎动物模型。将近交野生型橙红色Hd-dR和3个转基因青鳉品系(twist:EGFP、osx/sp7:mCherry、col10a1:nlGFP)的胚胎暴露于0.15 nM和0.3 nM的TCDD中,并饲养至20日龄。对个体进行矿化骨染色,并使用共聚焦显微镜成像,以结合成骨细胞和成骨细胞祖细胞群体的定性空间分析来评估中椎骨的骨骼改变。暴露于TCDD导致椎体骨化总体减弱,其特征为椎体截断,神经弓和血弓长度缩短。对矿化的影响与转基因标记的成骨细胞和成骨细胞祖细胞的细胞数量和细胞定位的改变一致。与对照组相比,在TCDD暴露后20日龄时,成骨调节因子 runt相关转录因子2(runx2)和osterix(osx/sp7)以及细胞外基质基因骨桥蛋白(spp1)、I型胶原蛋白α1(col1)、X型胶原蛋白α1(col10a1)和骨钙素(bglap/osc)的内源性表达显著降低。通过全转录组分析,鉴定出590多个差异表达基因,并将其映射到包括炎症性疾病、结缔组织疾病以及骨骼和肌肉疾病在内的选定病理状态。综上所述,本研究结果表明,TCDD暴露通过成骨细胞分化失调抑制轴向骨形成。这种方法突出了使用小鱼模型研究外源化合物暴露如何影响骨骼发育的优势和敏感性。

相似文献

1
From the Cover: Embryonic Exposure to TCDD Impacts Osteogenesis of the Axial Skeleton in Japanese medaka, Oryzias latipes.
Toxicol Sci. 2017 Feb;155(2):485-496. doi: 10.1093/toxsci/kfw229. Epub 2016 Nov 15.
2
Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes).
Matrix Biol. 2014 Feb;34:193-204. doi: 10.1016/j.matbio.2013.12.008. Epub 2014 Jan 7.
3
Multigenerational Impacts of Benzo[]pyrene on Bone Modeling and Remodeling in Medaka ().
Environ Sci Technol. 2020 Oct 6;54(19):12271-12284. doi: 10.1021/acs.est.0c02416. Epub 2020 Sep 14.
4
TCDD disrupts hypural skeletogenesis during medaka embryonic development.
Toxicol Sci. 2012 Jan;125(1):91-104. doi: 10.1093/toxsci/kfr284. Epub 2011 Oct 20.
5
A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization.
Dev Biol. 2013 Sep 1;381(1):134-43. doi: 10.1016/j.ydbio.2013.05.030. Epub 2013 Jun 13.
6
A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka.
Development. 2017 Jan 15;144(2):265-271. doi: 10.1242/dev.139550. Epub 2016 Dec 19.
7
The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development.
Dev Biol. 2017 Nov 15;431(2):252-262. doi: 10.1016/j.ydbio.2017.09.010. Epub 2017 Sep 9.
8
Dynamic expression of sparc precedes formation of skeletal elements in the Medaka (Oryzias latipes).
Gene. 2006 May 10;372:208-18. doi: 10.1016/j.gene.2006.01.011. Epub 2006 Mar 20.
10
Japanese medaka (Oryzias latipes): developmental model for the study of alcohol teratology.
Birth Defects Res B Dev Reprod Toxicol. 2006 Feb;77(1):29-39. doi: 10.1002/bdrb.20072.

引用本文的文献

1
Embryonic Exposure to TPhP Elicits Osteotoxicity via Metabolic Disruption in .
Toxics. 2025 Jul 31;13(8):654. doi: 10.3390/toxics13080654.
3
Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis.
Arch Toxicol. 2024 Sep;98(9):2763-2796. doi: 10.1007/s00204-024-03772-9. Epub 2024 May 17.
4
Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome.
Funct Integr Genomics. 2023 May 19;23(2):168. doi: 10.1007/s10142-023-01090-4.
5
Obesity III: Obesogen assays: Limitations, strengths, and new directions.
Biochem Pharmacol. 2022 May;199:115014. doi: 10.1016/j.bcp.2022.115014. Epub 2022 Apr 5.
6
Vitamin D deficiency serves as a precursor to stunted growth and central adiposity in zebrafish.
Sci Rep. 2020 Sep 29;10(1):16032. doi: 10.1038/s41598-020-72622-2.
9
Mechanisms of Developmental Toxicity of Dioxins and Related Compounds.
Int J Mol Sci. 2019 Jan 31;20(3):617. doi: 10.3390/ijms20030617.
10
A novel nonosteocytic regulatory mechanism of bone modeling.
PLoS Biol. 2019 Feb 1;17(2):e3000140. doi: 10.1371/journal.pbio.3000140. eCollection 2019 Feb.

本文引用的文献

1
Adverse effects in adulthood resulting from low-level dioxin exposure in juvenile zebrafish.
Endocr Disruptors (Austin). 2014;2(1). doi: 10.4161/endo.28309.
2
Building the backbone: the development and evolution of vertebral patterning.
Development. 2015 May 15;142(10):1733-44. doi: 10.1242/dev.118950.
3
Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae.
Aquat Toxicol. 2015 Jul;164:52-60. doi: 10.1016/j.aquatox.2015.04.005. Epub 2015 Apr 16.
4
The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway.
Toxicol Appl Pharmacol. 2014 Nov 1;280(3):502-10. doi: 10.1016/j.taap.2014.08.025. Epub 2014 Sep 3.
5
Using zebrafish as a model system for studying the transgenerational effects of dioxin.
Toxicol Sci. 2014 Apr;138(2):403-11. doi: 10.1093/toxsci/kfu006. Epub 2014 Jan 27.
6
Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes).
Matrix Biol. 2014 Feb;34:193-204. doi: 10.1016/j.matbio.2013.12.008. Epub 2014 Jan 7.
8
Multidimensional in vivo hazard assessment using zebrafish.
Toxicol Sci. 2014 Jan;137(1):212-33. doi: 10.1093/toxsci/kft235. Epub 2013 Oct 17.
10
Aryl hydrocarbon receptor and experimental autoimmune arthritis.
Semin Immunopathol. 2013 Nov;35(6):637-44. doi: 10.1007/s00281-013-0392-6. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验