Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Av., Urbana, IL, 61801, USA.
Top Curr Chem (Cham). 2017 Feb;375(1):12. doi: 10.1007/s41061-016-0100-9. Epub 2017 Jan 11.
Recent applications of ultrasound to the production of nanostructured materials are reviewed. Sonochemistry permits the production of novel materials or provides a route to known materials without the need for high bulk temperatures, pressures, or long reaction times. Both chemical and physical phenomena associated with high-intensity ultrasound are responsible for the production or modification of nanomaterials. Most notable are the consequences of acoustic cavitation: the formation, growth, and implosive collapse of bubbles, and can be categorized as primary sonochemistry (gas-phase chemistry occurring inside collapsing bubbles), secondary sonochemistry (solution-phase chemistry occurring outside the bubbles), and physical modifications (caused by high-speed jets, shockwaves, or inter-particle collisions in slurries).
本文综述了超声在制备纳米结构材料中的最新应用。超声化学可以在不需要高温、高压或长时间反应的情况下,制备新型材料或提供一种合成已知材料的途径。与高强度超声相关的化学和物理现象都可以导致纳米材料的产生或改性。其中最值得注意的是声空化的后果:气泡的形成、生长和内爆崩溃,可分为初级声化学(发生在崩溃气泡内的气相化学反应)、次级声化学(发生在气泡外的溶液相化学反应)和物理改性(由高速射流、冲击波或悬浮液中的颗粒间碰撞引起)。