Suppr超能文献

边带冷却超越量子反作用极限的压缩光。

Sideband cooling beyond the quantum backaction limit with squeezed light.

机构信息

National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

出版信息

Nature. 2017 Jan 11;541(7636):191-195. doi: 10.1038/nature20604.

Abstract

Quantum fluctuations of the electromagnetic vacuum produce measurable physical effects such as Casimir forces and the Lamb shift. They also impose an observable limit-known as the quantum backaction limit-on the lowest temperatures that can be reached using conventional laser cooling techniques. As laser cooling experiments continue to bring massive mechanical systems to unprecedentedly low temperatures, this seemingly fundamental limit is increasingly important in the laboratory. Fortunately, vacuum fluctuations are not immutable and can be 'squeezed', reducing amplitude fluctuations at the expense of phase fluctuations. Here we propose and experimentally demonstrate that squeezed light can be used to cool the motion of a macroscopic mechanical object below the quantum backaction limit. We first cool a microwave cavity optomechanical system using a coherent state of light to within 15 per cent of this limit. We then cool the system to more than two decibels below the quantum backaction limit using a squeezed microwave field generated by a Josephson parametric amplifier. From heterodyne spectroscopy of the mechanical sidebands, we measure a minimum thermal occupancy of 0.19 ± 0.01 phonons. With our technique, even low-frequency mechanical oscillators can in principle be cooled arbitrarily close to the motional ground state, enabling the exploration of quantum physics in larger, more massive systems.

摘要

电磁真空中的量子涨落会产生可测量的物理效应,如卡西米尔力和兰姆位移。它们还对使用传统激光冷却技术所能达到的最低温度施加了可观测的限制,即量子反作用限制。随着激光冷却实验继续将大量机械系统推向前所未有的低温,这种看似基本的限制在实验室中变得越来越重要。幸运的是,真空涨落并非一成不变,它们可以被“压缩”,以牺牲相位涨落为代价减少幅度涨落。在这里,我们提出并实验证明,压缩光可用于将宏观机械物体的运动冷却到低于量子反作用限制的温度。我们首先使用相干态光将微波腔光机械系统冷却到接近该限制的 15%。然后,我们使用约瑟夫森参量放大器产生的压缩微波场将系统冷却到低于量子反作用限制两个分贝以上。通过机械边带的外差光谱学测量,我们测量到的最小热占据数为 0.19±0.01 声子。通过我们的技术,即使是低频机械振荡器也可以在原理上被任意接近运动基态冷却,从而可以在更大、更重的系统中探索量子物理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验