Suppr超能文献

将纳米机械振荡器冷却至其零点能量

Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy.

作者信息

Qiu Liu, Shomroni Itay, Seidler Paul, Kippenberg Tobias J

机构信息

Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.

IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.

出版信息

Phys Rev Lett. 2020 May 1;124(17):173601. doi: 10.1103/PhysRevLett.124.173601.

Abstract

Optomechanical systems in the well-resolved-sideband regime are ideal for studying a myriad of quantum phenomena with mechanical systems, including backaction-evading measurements, mechanical squeezing, and nonclassical states generation. For these experiments, the mechanical oscillator should be prepared in its ground state, i.e., exhibit negligible residual excess motion compared to its zero-point motion. This can be achieved using the radiation pressure of laser light in the cavity by selectively driving the lower motional sideband, leading to sideband cooling. To date, the preparation of sideband-resolved optical systems to their zero-point energy has eluded laser cooling because of strong optical absorption heating. The alternative method of passive cooling suffers from the same problem, as the requisite milliKelvin environment is incompatible with the strong optical driving needed by many quantum protocols. Here, we employ a highly sideband-resolved silicon optomechanical crystal in a ^{3}He buffer-gas environment at ∼2  K to demonstrate laser sideband cooling to a mean thermal phonon occupancy of 0.09_{-0.01}^{+0.02} quantum (self-calibrated using motional sideband asymmetry), which is -7.4  dB of the oscillator's zero-point energy and corresponds to 92% ground state probability. Achieving such low occupancy by laser cooling opens the door to a wide range of quantum-optomechanical experiments in the optical domain.

摘要

在边带分辨良好的区域中的光机械系统是研究机械系统中众多量子现象的理想选择,这些现象包括反作用规避测量、机械压缩和非经典态生成。对于这些实验,机械振子应处于基态,即与零点运动相比,其残余的过量运动可忽略不计。这可以通过在腔中利用激光的辐射压力选择性地驱动较低的运动边带来实现,从而实现边带冷却。迄今为止,由于强烈的光吸收加热,将边带分辨光学系统冷却到零点能量一直难以通过激光冷却实现。被动冷却的替代方法也存在同样的问题,因为所需的毫开尔文环境与许多量子协议所需的强光驱动不兼容。在这里,我们在约2K的³He缓冲气体环境中使用高度边带分辨的硅光机械晶体,以证明激光边带冷却至平均热声子占有率为0.09_{-0.01}^{+0.02}量子(使用运动边带不对称性进行自校准),这比振子的零点能量低7.4dB,对应于92%的基态概率。通过激光冷却实现如此低的占有率为光学领域的广泛量子光机械实验打开了大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验