Suppr超能文献

集成低频机械谐振器的主动反馈量子控制

Active-feedback quantum control of an integrated low-frequency mechanical resonator.

作者信息

Guo Jingkun, Chang Jin, Yao Xiong, Gröblacher Simon

机构信息

Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ, Delft, The Netherlands.

Faculty of Physics, School of Science, Westlake University, Hangzhou, 310030, P. R. China.

出版信息

Nat Commun. 2023 Aug 5;14(1):4721. doi: 10.1038/s41467-023-40442-3.

Abstract

Preparing a massive mechanical resonator in a state with quantum limited motional energy provides a promising platform for studying fundamental physics with macroscopic systems and allows to realize a variety of applications, including precise sensing. While several demonstrations of such ground-state cooled systems have been achieved, in particular in sideband-resolved cavity optomechanics, for many systems overcoming the heating from the thermal bath remains a major challenge. In contrast, optomechanical systems in the sideband-unresolved limit are much easier to realize due to the relaxed requirements on their optical properties, and the possibility to use a feedback control schemes to reduce the motional energy. The achievable thermal occupation is ultimately limited by the correlation between the measurement precision and the back-action from the measurement. Here, we demonstrate measurement-based feedback cooling on a fully integrated optomechanical device fabricated using a pick-and-place method, operating in the deep sideband-unresolved limit. With the large optomechanical interaction and a low thermal decoherence rate, we achieve a minimal average phonon occupation of 0.76 when pre-cooled with liquid helium and 3.5 with liquid nitrogen. Significant sideband asymmetry for both bath temperatures verifies the quantum character of the mechanical motion. Our method and device are ideally suited for sensing applications directly operating at the quantum limit, greatly simplifying the operation of an optomechanical system in this regime.

摘要

将一个大型机械谐振器制备到具有量子极限运动能量的状态,为利用宏观系统研究基础物理提供了一个很有前景的平台,并能实现包括精确传感在内的各种应用。虽然已经实现了若干这种基态冷却系统的演示,特别是在边带分辨腔光机械学中,但对于许多系统而言,克服来自热库的加热仍是一项重大挑战。相比之下,处于边带未分辨极限的光机械系统由于对其光学性质的要求较为宽松,并且有可能使用反馈控制方案来降低运动能量,因此更容易实现。可达到的热占据最终受限于测量精度与测量的反作用之间的相关性。在此,我们展示了基于测量的反馈冷却,该冷却过程是在一个使用拾取和放置方法制造的完全集成光机械设备上进行的,该设备工作在深边带未分辨极限。凭借大的光机械相互作用和低热退相干率,我们在用液氦预冷时实现了最小平均声子占据为0.76,用液氮预冷时为3.5。对于两种热库温度,显著的边带不对称性验证了机械运动的量子特性。我们的方法和设备非常适合直接在量子极限下运行的传感应用,极大地简化了该状态下光机械系统的操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b07/10404274/03f89ceada5d/41467_2023_40442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验